

Sommario

L'organizzazione gerarchica dei sistemi di memoria e di comunicazione e la disponibilità di

molte unità di calcolo in�uiscono notevolmente sulle prestazioni di un algoritmo. Il loro

e�ciente utilizzo è limitato dalle di�erenti con�gurazioni che possono assumere. È cru-

ciale, per motivi economici e di portabilità, che gli algoritmi si adattino allo spettro delle

piattaforme esistenti e che la procedura di adattamento sia il più possibile automatizzata.

L'adattività può essere raggiunta sia tramite algoritmi aware, che utilizzano esplicitamen-

te opportuni parametri architetturali, sia tramite algoritmi oblivious, la cui sequenza di

operazioni è indipendente dalle caratteristiche dell'architettura sottostante. Gli algoritmi

oblivious esibiscono spesso prestazioni ottime su diverse architetture e sono attrattivi so-

prattutto nei contesti in cui i parametri architetturali sono di�cili da stimare o non sono

noti.

Questa tesi si focalizza sullo studio degli algoritmi oblivious con due obiettivi principali:

l'indagine delle potenzialità e limitazioni delle computazioni oblivious e l'introduzione del

concetto di algoritmo oblivious in un sistema parallelo.

Inizialmente, vengono a�rontate varie problematiche legate all'esecuzione di algoritmi

cache-oblivious per permutazioni razionali, le quali rappresentano un'importante classe di

permutazioni che include la trasposizione di matrici e il bit-reversal di vettori. Si dimostra

un lower bound, valido anche per algoritmi cache-aware, sul numero di operazioni macchina

necessarie per eseguire una permutazione razionale assumendo un numero ottimo di accessi

alla memoria. Quindi, si descrive un algoritmo cache-oblivious che esegue qualsiasi permu-

tazione razionale e che richiede un numero ottimo di operazioni macchina e di accessi alla

memoria, assumendo l'ipotesi di tall-cache. In�ne, si dimostra che per certe famiglie di per-

mutazioni razionali (tra cui la trasposizione e il bit-reversal) non può esistere un algoritmo

cache-oblivious che richieda un numero ottimo di accessi alla memoria per tutti i valori dei

parametri della cache, mentre esiste un algoritmo cache-aware con tali caratteristiche.

Nella tesi viene poi introdotto il framework network-oblivious per lo studio di algoritmi

oblivious in un sistema parallelo. Il framework esplora lo sviluppo di algoritmi paralle-

li di tipo bulk-synchronous che, senza usare parametri dipendenti dalla macchina, hanno

prestazioni e�cienti su macchine parallele con di�erenti gradi di parallelismo e valori di ban-

da/latenza. Vengono inoltre forniti algoritmi network-oblivious per alcuni problemi chiave

(moltiplicazione e trasposizione di matrici, trasformata discreta di Fourier, ordinamento) e

viene presentato un risultato di impossibilità sull'esecuzione di algoritmi network-oblivious

per la trasposizione di matrici che ricorda quello ottenuto per le permutazioni razionali.

In�ne, per mostrare ulteriormente le potenzialità del framework, vengono presentati

algoritmi network-oblivious ottimi per eseguire un'ampia classe di computazioni risolvibili

tramite il paradigma di programmazione ad eliminazione gaussiana, tra cui il calcolo dei

cammini minimi in un grafo, l'eliminazione gaussiana senza pivoting e la moltiplicazione di

matrici.

Abstract

The hierarchical organization of the memory and communication systems and the availabil-

ity of numerous processing units play an important role in the performance of algorithms.

Their actual exploitation is made hard by the di�erent con�gurations they may assume. It

is crucial, for economical and portability issues, that algorithms adapt to a wide spectrum of

executing platforms, possibly in an automatic fashion. Adaptivity can be achieved through

either aware algorithms, which make explicit use of suitable architectural parameters, or

oblivious algorithms, whose sequence of operations is independent of the characteristics

of the underlying architecture. Oblivious algorithms are more desirable in contexts where

architectural parameters are unknown and hard to estimate, and, in some cases, they still

exhibit optimal performance across di�erent architectures.

This thesis focuses on the study of oblivious algorithms pursuing two main objectives:

the investigation of the potentialities and intrinsic limitations of oblivious computations in

comparison with aware ones, and the introduction of the notion of oblivious algorithm in

the parallel setting.

We study various aspects concerning the execution of cache-oblivious algorithms for ra-

tional permutations, an important class of permutations including matrix transposition and

the bit-reversal of a vector. We provide a lower bound, which is also valid for cache-aware

algorithms, on the work complexity required by the execution of a rational permutation

with an optimal cache complexity. Then, we develop a cache-oblivious algorithm perform-

ing any rational permutation, which exhibits optimal work and cache complexities under

the tall-cache assumption. We then show that for certain families of rational permutations

(including transposition and bit-reversal) no cache-oblivious algorithm can exhibit optimal

cache complexity for all values of the cache parameters, while there exists a cache-aware

algorithm with this property.

We introduce the network-oblivious framework for the study of oblivious algorithms

in the parallel setting. This framework explores the design of bulk-synchronous parallel

algorithms that, without resorting to parameters for tuning the performance on the target

platform, can execute e�ciently on parallel machines with di�erent degree of parallelism

and bandwidth/latency characteristics. We illustrate the framework by providing optimal

network-oblivious algorithms for a few key problems (i.e., matrix multiplication and trans-

position, discrete Fourier transform and sorting) and by presenting an impossibility result

on the execution of network-oblivious algorithms for matrix transposition, which is similar,

in spirit, to the one provided for rational permutations.

Finally, we present a number of network-oblivious algorithms, which exhibit optimal

communication and computation complexities, for solving a wide class of computations

encompassed by the Gaussian Elimination Paradigm, including all-pairs shortest paths,

Gaussian elimination without pivoting and matrix multiplication.

Ringraziamenti

Ecco, �nalmente, la pagina che ho desiderato a lungo di scrivere e che sicuramente sarà la

più letta. Negli anni trascorsi come dottorando nel Dipartimento di Ingegneria Informatica

ho incontrato persone eccezionali con cui ho condiviso bellissimi momenti e che mi han-

no aiutato a crescere professionalmente e umanamente. Sono riconoscente a tutte queste

persone e ad alcune di loro voglio dedicare un pensiero.

Il primo grazie va ad Andrea. Mi ritengo fortunato ad aver avuto Andrea come advisor

in questi anni: è sempre stato disponibile a consigliarmi e ad aiutarmi, facendo sempre

più del suo dovere. Lo ringrazio soprattutto per aver cercato di migliorare, e sopportato,

il mio modo non lineare di pensare accompagnato da un �usso impulsivo di parole. Rin-

grazio poi Geppino per il suo corso di Fondamenti di Informatica II, che mi ha introdotto

all'algoritmica, e per essere stato un ottimo co-advisor.

Un ringraziamento speciale va alla vecchia guardia di dottorandi e assegnisti del labo-

ratorio ACG: Alberto B., Fabio, Francesco, Marco e Paolo; con loro ho condiviso i momenti

migliori e più allegri del mio dottorato e stretto bellissime amicizie. In particolare sono

grato a Fabio per le lunghe chiacchierate e per avermi contagiato con la sua passione per

la ricerca (prima o poi pubblicheremo qualcosa insieme!), e a Marco per avermi ricordato

che le risorse della Terra sono �nite. Sono poi riconoscente a Alberto P., Carlo, Enoch,

Gianfranco, Mattia e Michele per le interessanti discussioni (quelle di Gianfranco anche

particolarmente lunghe) e ad Alessandra, il cuore della Scuola di Dottorato, per la sua

gentilezza e disponibilità.

Non posso dimenticare Bruno che con tutta la sua energia mi ha permesso di capire e

apprezzare gli Stati Uniti D'America.

Un grazie speciale va ad Adriano per essere stato un vero amico in tutti questi anni

e per tutte le birre bevute insieme. Ringrazio poi Alberto e Martina per aver condiviso

l'appartamento, ma soprattutto per aver sopportato i miei go� tentativi di far saltare la

pasta in padella.

In�ne, voglio dire grazie alle tre persone più importanti della mia vita, anche se non

sono in grado di esprimere quello che sono stati e hanno fatto per me: senza di loro non

avrei mai provato quei sentimenti di cui ora non posso più fare a meno. A mia mamma

Fanny e a mio papà Giuliano: il vostro amore è stato un punto di riferimento e un aiuto in

tutti questi anni; senza di voi, non sarei arrivato �n qui. E ad Elisa, la mia futura moglie:

grazie per avermi sempre ascoltato, consigliato ed essere stata al mio �anco; grazie a te ora

sono Felice.

Acknowledgements

It is very di�cult for me to translate my feelings into English, but I would like to thank the

few people that cannot understand my language. I'm grateful to Vijaya Ramachandran for

inviting me to spend some months at the University of Texas at Austin and for the useful

discussions. I also thank Rezaul Alam Chowdhury for his collaboration.

Contents

Chapter 1: Introduction 1

Chapter 2: Models for Memory and Communication Hierarchies 9

2.1 Models for memory hierarchy . 10

2.1.1 External Memory model . 11

2.1.2 Ideal Cache model . 12

2.2 Models for communication hierarchy 15

2.2.1 D-BSP model . 17

Chapter 3: Limits of Cache-Oblivious Rational Permutations 21

3.1 Rational permutations . 23

3.2 Lower bounds . 26

3.3 Cache-oblivious algorithm for rational permutations 33

3.3.1 Computing the values of a rational permutation 33

3.3.2 Performing a rational permutation 35

3.4 Limits of cache-oblivious rational permutations 39

3.4.1 The simulation technique . 40

3.4.2 Impossibility result for rational permutations 42

Chapter 4: Network-Oblivious Algorithms 47

4.1 The framework . 49

4.2 Algorithms for key problems . 54

4.2.1 Matrix multiplication . 54

4.2.2 Matrix transposition . 61

4.2.3 Impossibility result for matrix transposition 63

4.2.4 FFT . 65

4.2.5 Sorting . 67

Chapter 5: Network-Oblivious Algorithms for GEP 71

5.1 Preliminaries . 72

5.1.1 De�nition of GEP . 72

i

ii Contents

5.1.2 Previous cache-oblivious and parallel implementations of GEP 73

5.2 Network-Oblivious Algorithms . 75

5.2.1 N-GEP . 76

5.2.2 εN-GEP . 90

5.2.3 PN-GEP . 101

Chapter 6: Conclusions 103

6.1 Summary . 103

6.2 Further research . 105

Appendix A: Properties of Function f(x) 107

Appendix B: Pseudocode of PI-GEP1 and PI-GEP2 111

Bibliography 115

Chapter 1

Introduction

You have to be fast on your feet and

adaptive or else a strategy is useless.

(Charles de Gaulle)

Since the advent of computers, the request of computational power from applica-

tions has been continuously growing and has increased signi�cantly in the last twenty

years with the emergence of novel applications in computational sciences as well as

in many other contexts. This phenomenon has posed formidable challenges to both

computer architects and software/algorithm designers, and much progress has been

made in the development of architectures, algorithms and compilers. Nevertheless,

the potential power of actual platforms can hardly be fully exploited.

One of the main reasons which limit the e�ciency of an application is the so-

called memory wall. While the clock speed of functional units has been growing

exponentially, at least until recent years when physical limits have been approached

[ABC+06], the advances in the realization of memory supports have been less impres-

sive. This phenomenon has increased the gap in e�ciency between functional units

and memory supports, which is the main cause of ine�ciency in sequential applica-

tions [Bac78]. Several architectural approaches have been adopted to mitigate the

impact of this gap. The traditional approach consists in the introduction, between

the main memory and the functional unit(s), of several levels of caches, which are

fast yet small memories [HP06]. The main justi�cation for this hierarchical orga-

nization of the memory system is that an algorithm typically reuses small sets of

data within relatively short time intervals, a property referred to as temporal locality

of reference. Thus, the time required for retrieving these data can be decreased if

they are stored in faster caches. Another important aspect is the movement of data

in batches of contiguous segments (blocks) between adjacent levels of the memory

hierarchy. The motivation is that an algorithm usually requires data that reside in

1

2 Chapter 1. Introduction

contiguous memory locations within a short time interval, a property referred to as

spatial locality of reference. Since accessing all data in one shot is less expensive than

performing several independent accesses, it is convenient to move data in blocks.

A number of compilers, prefetching techniques and runtime speculative analy-

ses [KA02, HP06] have been introduced to reduce the programmers' e�ort when

dealing with the memory hierarchy. Although, these approaches yield some perfor-

mance improvements, more substantial optimizations can be made at the algorithm

design level. For this reason, a number of computational models have been intro-

duced to help programmers develop algorithms which perform e�ciently in memory

hierarchies (see [Vit01, MSS03] and references therein). These models aim at rep-

resenting only the most important features of the hierarchy in order to simplify the

design process. Examples are the External Memory model of Aggarwal and Vitter

[AV88] and the Ideal Cache model of Frigo et al. [FLPR99]. The �rst represents

a disk-RAM hierarchy [Vit01, GVW96, SN96], while the second a RAM-cache one

[Dem02, ABF05].

As already noted, the clock speed cannot be increased inde�nitely since the �nite

speed of light and thermodynamic laws impose physical limitations. A natural solu-

tion to increase the number of operations executed per time unit is the resort to par-

allel architectures. Parallelism has been studied for decades [JáJ92, Lei92, CSG98],

and has been explored at the bit level, instruction level, and thread level. Many

compilers [Wol96] and languages [MHS05] have been proposed to help programmers

extract parallelism automatically from their applications, but they do not always

provide optimal solutions. Indeed, the best approach is to expose parallelism explic-

itly at the algorithm design level. However, there is practical evidence that this is

not an easy task. Furthermore, the situation is made more complex by the lack of

a widely accepted model of computation which strikes a good balance between the

con�icting requirements of usability, e�ectiveness and portability. In the sequential

setting one such model has been constituted for many years by the Random Access

Machine based on the Von Neumann organization [AHU74]. Unfortunately, in the

parallel setting there is still no agreement on a common model for algorithm de-

sign and analysis, although some proposals have received considerable attention and

a broad consensus. Among them we recall the Bulk Synchronous Parallel (BSP)

model by Valiant [Val90] and successive extensions, like the Decomposable-BSP (D-

BSP) model by De la Torre and Kruskal [DlTK96], which have been both extensively

studied (see [BPP07] and references therein).

A major obstacle to the achievement of high performance in parallel architec-

tures, is represented by the cost of communication. Since the relevance of this factor

3

increases with the size of the system, communication will play an even greater role

in future years. Thus, reducing the communication requirements of algorithms is of

paramount importance, if they have to run e�ciently. The cost of communication is

in general dependent on the distance between the processors involved, and in typ-

ical parallel architectures processors communicate through a hierarchical intercon-

nection featuring di�erent bandwidth and latency characteristics at di�erent levels.

Thus programs run e�ciently if they are able to con�ne data exchanges within small

regions of the interconnection, a property referred to as submachine locality. This

scenario is re�ected in several models [Lei85, BP97, BP99, ACS90, CKP+96], and

constitute the fundamental grounds upon which the aforementioned D-BSP model,

which e�ectively describes a very large and signi�cant class of parallel platforms

[BPP07], has been de�ned.

Therefore, it is evident that parallelism on the one hand and the hierarchical

organization of the memory and of the interconnection on the other play a key role

in the performance of applications, and their combination has become even more

evident with the advent of Chip Multi-Processors [ONH+96]. As we have already

observed, optimizations based on these factors can be reached, to some extent, by

automatic techniques, but the best results are obtained through a judicious algo-

rithm design process. In aggressive optimizations, an algorithm is tuned to match

almost perfectly the characteristics of the target machine. Although this approach is

common in applications which require expensive or special purpose platforms (such

as IBM BlueGene/L [Aea02] and APE computers for Quantum Chromo Dynam-

ics [BPP+05]), in general it is undesirable for economical and portability reasons.

Moreover, an aggressive optimization could not be possible in scenarios, like grid

environments [FK03], where software may be required to run, for availability or load

management purposes, on widely di�erent con�gurations, which may be revealed

only at runtime. An alternative approach, which is becoming more and more popu-

lar, is provided by adaptive algorithms, that is, algorithms which adapt themselves

to the target machine where they run. We can distinguish two di�erent kinds of

adaptive algorithms: aware and oblivious.

Aware adaptive algorithms use machine dependent parameters that are set at run

time to match adaptively the structure of the actual platform. Some libraries that

follow this approach are: Fast Fourier Transform in The West (FFTW) [FJ98] for

the discrete Fourier transform (DFT), Automatically Tuned Linear Algebra Software

(ATLAS) [WPD01] for linear algebra problems, Finite-Elements Multifrontal Solver

(FEMS) [Ber08] for applications based on the Finite-Elements method. The FFTW

library computes a plan for the machine where it is running, which provides informa-

4 Chapter 1. Introduction

tion on how the DFT can be e�ciently computed on that machine. If the machine

does not change, the plan can be reused for many transforms, amortizing the cost of

plan building. ATLAS is an implementation of a style of performance software pro-

duction called Automated Empirical Optimization of Software (AEOS) [WPD01]; in

an AEOS-enabled library, many di�erent ways of performing a given kernel operation

are supplied, and timers are used to empirically determine which implementation is

best for a given architecture. FEMS is a solver designed for distributed-memory

parallel machines and arranges the computation based on the organization of the

memory system and on the subdivision of processors into clusters.

Oblivious adaptive algorithms are algorithms where no parameters dependent on

machine characteristics need to be tuned to achieve e�ciency, and still exhibit high

performance on several machines. This tape of algorithms has recently been intro-

duced by Frigo et al. in [FLPR99] through the notion of cache-oblivious algorithms.

These algorithms are designed for the Random Access Machine, but are analyzed

on the Ideal Cache model. Cache-oblivious algorithms are desirable because if op-

timal in the Ideal Cache model they can be proved, under some assumptions, to

be optimal also in multi-level memory hierarchies. Cache-oblivious algorithms have

been proposed for many problems (see [Dem02, ABF05] and references therein), and

they have also been adopted in the commercial software Tokutek [Tok]. Intuitively,

a key paradigm for cache-oblivious algorithms is divide and conquer : problems are

recursively decomposed into smaller problems which, at some point of the recursion,

will �t in the cache of the machine. However, it must be said that some problems

can be solved optimally by non-recursive cache-oblivious algorithms.

Although the aware approach in practical settings reaches better results than the

oblivious one [YRP+07], we think that the latter embodies valuable ideas and oppor-

tunities. As noted in [Fri99], with reference to cache-oblivious computations, since

divide and conquer is advantageous for portable high-performance programs, archi-

tectural innovations and compiler techniques to reduce the cost of procedure calls are

to be sought. An improvement in this direction will reduce the practical gap between

oblivious and aware algorithms, and make oblivious algorithms more appealing for

their higher portability. Another advantage of obliviousness over awareness is that

it requires no parameters to be tuned. Hence the executing platform can be dynami-

cally changed without requiring a parameter recalibration to adapt the algorithm to

the new machine, a property very desirable in grid or global computing environments

[Aeo, FK03].

This thesis focuses on the study of oblivious algorithms pursuing two main ob-

jectives. The �rst objective is to further investigate the potentialities and intrinsic

5

limitations of oblivious versus aware algorithms. The second objective is to introduce

the notion of oblivious computation in the parallel setting.

In principle, aware algorithms are able to use the target platforms more e�ec-

tively than oblivious algorithms, since they have more knowledge about the system

on which they are running. Nevertheless, for several notable problems the oblivious

approach is asymptotically equivalent to the aware one [FLPR99, Dem02, ABF05].

In [FLPR99], the authors ask if there exists a separation in asymptotic complex-

ity between cache-aware and cache-oblivious algorithms. Few works have recently

made contributions in this direction. Bilardi and Peserico [BP01] provided a �rst

study of this gap in the context of DAG computations on the Hierarchical Mem-

ory model [AACS87], and, recently, Brodal and Fagerberg [BF03] have proved that

cache-oblivious algorithms for sorting and permuting cannot be optimal for a full

range of values of the cache parameters.

Inspired by these works, we have looked for other problems where the aware and

oblivious approaches exhibit an asymptotical separation. Speci�cally, in the thesis

we consider an important class of permutations. Permuting a vector is a funda-

mental primitive that arises in many problems; in particular the so-called rational

permutations are widely used. A permutation is rational if it is de�ned by a per-

mutation of the bits of the binary representations of the vector indices. Matrix

transposition, bit-reversal, and some permutations implemented in the Data En-

cryption Standard (DES) [FIP99] are notable examples of rational permutations.

We study the execution of these permutations in cache hierarchies, with particular

emphasis on the cache-oblivious settings. We �rst prove a lower bound on the work

needed to execute a rational permutation with an optimal cache complexity. Then,

we develop a cache-oblivious algorithm to perform any rational permutation, which

exhibits optimal work and cache complexities in those cache that satisfy the tall-

cache assumption [FLPR99], that is where the cache size is at least the square of

the block length. We �nally show that for certain families of rational permutations

(including matrix transposition and bit-reversal) no cache-oblivious algorithm can

exhibit optimal cache complexity for all values of the cache parameters, while this

is attainable through a cache-aware algorithm. Our results and the ones in [BF03]

provide evidence that, in some cases, the tall-cache assumption is required in order

to achieve cache optimality in an oblivious fashion. While caches in modern archi-

tectures are usually tall, this in general is not the case for the Translation Lookaside

Bu�er (TLB) which can be regarded as a type of cache [HP06, Kum03]. Hence these

results may shed some light on the interaction that algorithms have with the TLB,

highlighting some non-optimal behaviors.

6 Chapter 1. Introduction

To the best of our knowledge, cache-oblivious algorithms constitute the only

example of oblivious adaptiveness studied in the algorithmic �eld. A prominent

scenario where an oblivious approach is desirable is that of parallel computations.

Attempts to introduce the notion of oblivious computation in the parallel setting

have recently been made in [BFGK05, FS06, CR08]. However, most parallel algo-

rithms adapt in an aware fashion to parameters that relate to parallelism in the

architecture, such as, for example, processor number and bandwidth/latency of the

interconnection. In this thesis, we de�ne an environment for the design, analysis

and execution of oblivious parallel algorithms, which we refer to as the network-

oblivious framework. This framework has been inspired by the following vision of

cache-oblivious algorithms. Cache-oblivious algorithms can be studied by means of

three models: the speci�cation model (the Random Access Machine), where the only

parameter is the input size; the evaluation model (the Ideal Cache), which consists

of a two-level memory hierarchy and speci�es as parameters the cache size and the

block length; the execution machine model which features a multi-level hierarchy

and represents more accurately actual architectures. A cache-oblivious algorithm is

designed in the speci�cation model; its cache complexity is assessed in the evalua-

tion model and optimality in the evaluation model translates into optimality in the

execution model, under certain assumptions.

In a similar fashion, the network-oblivious framework is based on three distinct

models: the speci�cation model where algorithms are developed, consisting of a

clique of processor/memory pairs, whose number is function exclusively of the in-

put size and which support a bulk-synchronous programming style; the evaluation

model where algorithms are analyzed, which is similar to the speci�cation model but

provides two parameters, namely processor number and communication block-size,

which capture parallelism and granularity of communication, respectively; the exe-

cution model where algorithms are eventually executed, which is a block-variant of

the D-BSP model. We prove that, for a wide class of network-oblivious algorithms,

optimality in the evaluation model implies optimality in the execution model. We

substantiate our study by providing optimal network-oblivious algorithms for some

fundamental computational kernels, namely matrix multiplication and transposi-

tion, discrete Fourier transform and sorting. We also prove a result on the separa-

tion between the oblivious and the aware approaches: speci�cally, we show that no

network-oblivious algorithm for matrix transposition can be optimal for all values of

the evaluation model parameters, while this is attainable through an aware parallel

approach.

In this thesis, we further show the potential of the network-oblivious approach for

7

an important class of applications. Speci�cally, as argued in [CR06], notable prob-

lems such as all-pairs shortest paths, Gaussian elimination without pivoting and

matrix multiplication, can be solved by a generic algorithmic paradigm referred to

as the Gaussian Elimination Paradigm (GEP). Building on previous parallel cache-

oblivious algorithms developed in [CR07, CR08], which correctly implement several

GEP computations, we derive three network-oblivious algorithms, named N-GEP,

εN-GEP and PN-GEP, which correctly solve a wide class of GEP computations,

included the aforementioned ones. All of these algorithms exhibit optimal perfor-

mance in the evaluation model and, furthermore, we show that one of them, namely

N-GEP, performs optimally also on a D-BSP model for certain signi�cant ranges of

parameters.

The remaining part of the thesis is structured a follows. Chapter 2 presents an

overview of models for memory and communication hierarchies and describes the

three computational models that will be used in the thesis, namely the External

Memory, the Ideal Cache and the Decomposable-BSP models. Chapter 3 presents

the results regarding the execution of rational permutations in cache hierarchies.

Chapter 4 introduces the network-oblivious framework and network-oblivious algo-

rithms for the aforementioned computational kernels. Chapter 5 provides the three

network-oblivious algorithms for GEP computations. Finally, Chapter 6 concludes

with a brief summary and some open problems.

Part of the results contributed by the thesis have been published in the open

literature. Results described in Chapter 3 appeared as a preliminary version in

[Sil06] and, in the current form, in [Sil08]. The contents of Chapter 4 are based

on a joint work with Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci,

which appeared in [BPPS07]. Part of the results in Chapter 5 are a joint work

with Rezaul Alam Chowdhury and Vijaya Ramachandran. The research activities

of the thesis have been supported by the EU/IST Project �AEOLUS �, by MIUR

of Italy under the project �MAINSTREAM � and the fellowship �Legge 170 �. The

research that led to the results in Chapter 5 was also supported by NSF Grants

CCF-0514876 and CCF-0850775 and carried out in part while the candidate was

visiting the Department of Computer Sciences of the University of Texas at Austin.

8 Chapter 1. Introduction

Chapter 2

Models for Memory and

Communication Hierarchies

Martin's Law of Communication. The

inevitable result of improved and enlarged

communication between di�erent levels in

a hierarchy is a vastly increased area of

misunderstanding.

(Thomas L. Martin, Jr.)

As seen in Chapter 1, the idea behind memory and communication hierarchies

is that good (sequential and parallel) algorithms exhibit high locality that can be

exploited by the hardware in the following way:

• An algorithm usually refers to the same data within relatively small time in-

tervals (temporal locality of reference), hence it is convenient to store this data

in the fastest levels (which are also the smallest ones) to decrease the access

time; moreover, contiguous memory locations are involved in consecutive oper-

ations (spatial locality of reference), thus moving segments of consecutive data

between memory levels can decrease latency.

• Communications performed by a parallel algorithm are usually enclosed in

small areas of the network (submachine locality): by means of a hierarchical in-

terconnection, communications within small areas can exploit high bandwidth

and low latency.

Algorithms, data structures and models for memory and communication hierar-

chies have been studied for many years, resulting in a large body of works appeared

in the literature. The aim of this chapter is not to give a survey on the argument, but

9

10 Chapter 2. Models for Memory and Communication Hierarchies

to focus on the models that will be used in this dissertation. Section 2.1 describes two

models for memory hierarchy: the External Memory model of Aggarwal and Vitter

[AV88] in Section 2.1.1; the Ideal Cache model and the cache-oblivious framework of

Frigo et al. [FLPR99] in Section 2.1.2. Section 2.2 focuses on the model for communi-

cation hierarchy originally introduced by De la Torre and Kruskal [DlTK95, BPP07]

which is called Decomposable Bulk Synchronous Parallel model.

In this section, the models for memory and communication hierarchies are ana-

lyzed separately, as it is common in the literature. However, it deserves to be noticed

that a number of works in the literature (e.g., [PPS06, Sil05, FPP06, DHMD99,

SK97]) have explored the relations between locality of reference and submachine

locality. This thesis does not cover this topic, but some remarks will be made in

Chapter 4, where we describe the network-oblivious framework, which embodies a

suitable adaptation of the ideas at the core of the cache-oblivious one.

2.1 Models for memory hierarchy

The typical memory hierarchy of a uniprocessor consists of many levels: it is common

to �nd two or three levels of caches, an internal memory (the traditional Random

Access Memory [AHU74]), and an external memory (an hard disk or a tape). Due

to technological constraints, the levels which are close to the CPU have small access

times, but small capacities as well. Furthermore, for latency hiding, data movements

between adjacent memory levels involve blocks of consecutive memory locations, a

feature usually referred to as block transfer. Thus, an algorithm must expose tempo-

ral and spatial locality of reference in order to take advantage of such a hierarchical

organization.

Many models have been proposed to explicitly account for the hierarchical nature

of the memory system. We can divide these works basically in three classes: models

that represent a disk-RAM hierarchy, models that represent a RAM-cache hierarchy,

and models that feature a multilevel hierarchy (i.e., more than two levels).

According to Vitter [Vit01] the study of relations between disk and memory

started with Demuth's Ph.D. on sorting [Dem56, Dem85] and the Knuth's extensive

study [Knu98] of sorting on magnetic tapes and disks. At about the same time,

Floyd de�ned a model which consists of a memory of M words and blocks of length

M/2 [Flo72]. Hong and Kung [HK81] de�ned a pebbling game for proving lower

bounds in a model without the block transfer feature, which was later taken into

account by Savage and Vitter [SV87]. One of the most famous models is the External

Memory (EM) model by Aggarwal and Vitter [AV88], which features a two-level

2.1. Models for memory hierarchy 11

disk-RAM hierarchy where P blocks can be transferred in parallel between the disk

and the RAM; they also proposed tight lower and upper bounds for sorting, matrix

transposition and the Fast Fourier Transform (FFT). This model was improved by

the Vitter's Parallel Disk model [VS94], which allows P concurrent block transfers

from P disks. Surveys on the disk-RAM models appeared in [Arg04, Vit01, GVW96,

SN96].

The RAM-cache hierarchy is similar to the disk-RAM one, except that data

movements cannot be controlled explicitly by the algorithm but are orchestrated by

some automatic policy. Frigo et al. [FLPR99] proposed the Ideal Cache (IC) model,

a two-level hierarchy composed of a memory and a fully-associative cache with an

optimal replacement policy [Bel66]. In [FLPR99], the authors pioneer the study of a

class of algorithms called cache-oblivious algorithms, which aim at obtaining optimal

performance on di�erent caches without explicitly using the cache parameters. Other

models which extend the IC model taking into account the limited associativity of

caches were proposed by Mehlhorn and Sanders [MS00] and by Sen et al. [SCD02].

Finally, some models feature a complex memory hierarchy. In the Hierarchical

Memory (HM) model of Aggarwal et al. [AACS87], the access time to location x

in memory requires time f(x), where f is a non decreasing function. The block

transfer feature was added to the HM model in [ACS87]. These two models can be

considered a continuous version of memory hierarchy. Alpern et al. [ACFS94] de�ned

the Uniform Memory Hierarchy where the parameters of a multilevel memory (i.e.,

bandwidth, memory size and block length) grow at uniform rates.

In the following sections we will use matrix multiplication as an example for

understanding the EM and IC models: we denote with n-MM the multiplication of

two n × n matrices using only semiring operations. We suppose all matrices to be

stored in the slowest level according with a row-major layout (other layouts, like the

column-major and the bit-interleaved, can be adopted as well).

2.1.1 External Memory model

The External Memory model (EM(M,B)) of Aggarwal and Vitter [AV88] features

two levels of memory: a (fast) RAM memory of M words and an arbitrarily large

(slow) disk. The processor can only reference words that reside in RAM. The disk is

divided into blocks of B adjacent words called B-blocks, or simply blocks if B is clear

from the context. An input operation moves a B-block of the disk into B words of

the RAM, and an output operation moves B words of the RAM into a B-block of the

disk. The input/output operations (I/Os) are explicitly controlled by the algorithm

and the I/O complexity of an EM algorithm is the number of I/Os performed by the

12 Chapter 2. Models for Memory and Communication Hierarchies

algorithm.

Note that the above de�nition is slightly di�erent from the one given in [AV88]

for two reasons. Firstly, in the described model the starting position of a B-block

in the disk is �xed1, while in the original model a block can start in any position;

however, as noted in [AV88], the two versions are equivalent from the point of view of

asymptotic analysis. Secondly, in the original model at most P I/Os are performed

concurrently but, as noted by Vitter in [Vit01] this kind of parallelism is unrealistic

in that the P I/Os are allowed to take place in the same disk (the Parallel Disk

model improves in some sense the original speci�cation of the EM by introducing

concurrent disks).

As mentioned above, we describe an EM algorithm for the n-MM problem.

Theorem 2.1. There exists an optimal EM algorithm for the n-MM problem whose

I/O complexity on an EM(M,B) is

Θ

(
n3

B
√
M

+
n2

B
+ 1

)
.

Proof. Let A and B be the two input matrices and let C be the output matrix,

which we suppose to be initially set to zero. For simplicity, we suppose n2 > M and

M > B2 (for the remaining cases we refer to [GVL96]). Consider A (resp., B and C)

divided into submatrices of size s× s where s = α
√
M , with α a suitable constant in

(0, 1), and denote each submatrix with Ai,j (resp., Bi,j and Ci,j), for 0 ≤ i, j < n/s.

The algorithm is composed of (n/s)3 steps, and in each one the algorithm fetches

Ai,k, Bk,j and Ci,j from the disk, for suitable values of i, j and k, and computes

Ci,j ← Ci,j +Ai,k ·Bk,j with the traditional Θ (s3) iterative algorithm; then data are

written into the disk. The correctness of the algorithm is straightforward and the

I/O complexity of the algorithm is O
(
n3/B

√
M
)
, since O (s2/B) = O (M/B) I/Os

are required for loading and writting submatrices from and to the disk. Optimality

descends from [HK81]. �

EM algorithms for matrix transposition, sorting and FFT are given in [AV88],

while [Vit01] provides a complete survey.

2.1.2 Ideal Cache model

The Ideal Cache model (IC(M,B)) was introduced by Frigo et al. in [FLPR99] and

consists of an arbitrarily large main memory and a (data) cache of M words. The

1Loosely speaking, the initial position of the B-block containing memory location x is x mod B.

2.1. Models for memory hierarchy 13

main memory is organized into blocks of B adjacent words called B-blocks, or simply

blocks if B is clear from the context. The cache is fully associative and organized in

M/B > 1 lines of B words each. At any time during the execution of an algorithm,

a line is either empty or it contains a B-block of the memory. The processor can

only reference words that reside in cache: if a referenced word belongs to a block in

a cache line, a cache hit occurs; otherwise there is a cache miss and the block has

to be copied into a line, replacing the line's previous content. The model adopts an

optimal o�-line replacement policy, that is, it replaces the block whose next access

is furthest in the future [Bel66]. It is easy to see that an IC algorithm is formulated

as a traditional RAM algorithm. We denote as work complexity of an algorithm the

number of (elementary) operations it performs, and as cache complexity the number

of misses it incurs. Note that the work complexity is not de�ned in the EM model

since an I/O is a very slow operation, and the execution time of an algorithm is

generally determined by disk accesses.

There is a natural correspondence between I/Os in the EM model and cache

misses in the IC model: a miss requires the fetching of a B-block from memory and

the eviction of a B-block from cache if there is no empty line; hence, a miss corre-

sponds to at most two I/Os, and for these reasons we will intentionally mix the two

terms. Lower bounds on the cache complexity on IC(M,B) naturally translate into

lower bounds on the I/O complexity on EM(M,B). Furthermore, an EM algorithm

translates into an IC algorithm by removing I/O operations, and its cache-complexity

is not bigger than the I/O complexity of the original algorithm, if the same values

are used for corresponding parameters.

One of the most restrictive assumptions of the IC model is the optimal o�-line

replacement policy, however Frigo et al. proved that the cache complexity of a wide

class of IC algorithms does not change asymptotically on an IC model with a Last

Recently Used (LRU) replacement policy.

Corollary 2.2. [FLPR99, Corollary 13] Consider an algorithm A with input

size n whose cache complexity is Q(n,M,B) on an IC(M,B). If Q(n,M,B) satis�es

the regularity condition

Q(n,M,B) ∈ O (Q(n, 2M,B)) , (2.1)

then the cache complexity of A on an IC(M,B) with an LRU replacement policy is

Θ (Q(n,M,B)).

14 Chapter 2. Models for Memory and Communication Hierarchies

Cache-oblivious algorithms

As de�ned in [FLPR99], a cache-oblivious (resp., cache-aware) algorithm is an IC

algorithm whose speci�cation is independent of (resp., dependent on) the cache pa-

rametersM and B. A cache-optimal (resp., work-optimal) cache-oblivious algorithm

denotes a cache-oblivious algorithm which reaches the best cache (resp., work) com-

plexity on an IC(M,B) for all values of M and B; if an algorithm is both cache and

work-optimal, it is said optimal. A number of cache-oblivious algorithms proposed

in literature are cache-optimal only under the tall-cache assumption, that is, when

M ≥ B2.

In [FLPR99] it is also proved that optimal cache-oblivious algorithms exhibit, un-

der certain circumstances, optimal performance on platforms with multi-level mem-

ory hierarchies.

Lemma 2.3. [FLPR99, Lemma 15] A cache-optimal cache-oblivious algorithm

whose cache complexity satis�es the regularity condition 2.1 incurs an optimal num-

ber of cache misses on each level of a multilevel hierarchy of IC caches with an LRU

replacement policy.

A number of optimal cache-oblivious algorithms [FLPR99, Dem02] and data

structures [ABF05] have been proposed in literature for important problems. As

we will see in details in Chapter 3, potentialities and intrinsic limitations of oblivi-

ous versus aware algorithms has been studied by Bilardi and Peserico [BP01] and by

Brodal and Fagerberg [BF03].

Cache-oblivious algorithms are attractive especially in a global computing envi-

ronment [FK03], which provides dependable and cost-e�ective access to a number of

platforms of varying computational capabilities, irrespective of their physical loca-

tions or access points. Indeed, the actual platform(s) onto which an application is

ultimately run, may not be known at the time when the application is designed.

As in the EM model, we describe a cache-oblivious algorithm for the n-MM

problem.

Theorem 2.4. [FLPR99, Theorem 1] There exists a cache-oblivious algorithm

for the n-MM problem that requires optimal work

W (n,M,B) ∈ Θ
(
n3
)
,

and, under the tall-cache assumption, optimal cache complexity

Q(n,M,B) ∈ Θ

(
n3

B
√
M

+
n2

B
+ 1

)
. (2.2)

2.2. Models for communication hierarchy 15

Proof. This is a sketch of the original proof. Let A and B be the two n × n input

matrices and let C be the output matrix, which we suppose to be initially set to zero.

The algorithm divides each matrix into four n/2×n/2 submatrices, which we denote

by Ai,j and Bi,j, for i, j ∈ {0, 1}. Then, eight subproblems Ci,j ← Ci,j + Ai,k · Bk,j

are computed recursively for all values of i, j and k, with i, j, k ∈ {0, 1}. The

recursion stops when the subproblem size is a constant. It easy to see that the cache

complexity is given by the following recurrence, where the base case is reached when

the subproblem is entirely contained in cache (α ∈ (0, 1) is a suitable constant):

Q(n,M,B) ≤

8Q
(n

2
,M,B

)
+O

(
n2

B

)
if n2 > αM

O

(
n2

B
+ 1

)
if n2 ≤ αM

which yields Equation 2.2. Optimality follows from [HK81]. The correctness of the

algorithm and its work complexity can be easily derived. �

Note that the cache-oblivious algorithm for n-MM exhibits the traditional divide

and conquer structure of cache-oblivious algorithms: the problem is recursively de-

composed into smaller subproblems, until the subproblem �ts in cache. Since the

cache size cannot be used in the algorithm, the recursion �nishes when the subprob-

lem has a constant size.

As we will see in Chapter 4, it is convenient to study the de�nition and analysis

of cache-oblivious algorithms with reference to the following three distinct models:

the speci�cation model, which is a Random Access Machine; the evaluation model,

which is an IC(M,B); the execution machine model which is a hierarchy of many ICs

with an LRU replacement policy. A cache-oblivious algorithm is an algorithm de�ned

in the speci�cation model whose cache and work complexities are measured in the

evaluation model (clearly, a so de�ned algorithm is independent of IC parameters)

and which is carried out in the execution model.

2.2 Models for communication hierarchy

The de�nition of the amount of communication performed by an algorithm presents

many obstacles: indeed, communication is de�ned only with respect to a speci�c

mapping of a computation onto a speci�c machine structure. Furthermore, the

impact of communication on performance depends on the latency and bandwidth

properties of the channels connecting di�erent parts of the target machine. In this

scenario, algorithm design, optimization, and analysis can become highly machine

16 Chapter 2. Models for Memory and Communication Hierarchies

dependent, which is undesirable from the economical perspective of developing e�-

cient and portable software, and it is not clear whether a single model of computation

can adequately capture the communication requirements of an algorithm for all ma-

chines. This problem has been widely acknowledged and a number of approaches

have been proposed to tackle it.

We can organize the existing parallel models of computation in a spectrum and

outline three classes. On one end of the spectrum, we have the parallel slackness

approaches, based on the assumption that, if a su�cient amount of parallelism is

provided by algorithms, then general and automatic latency-hiding techniques can

be deployed to achieve an e�cient execution. Broadly speaking, the required algo-

rithmic parallelism must be at most proportional to the product of the number of

processing units by the worst-case latency of the target machine [Val90]. Assuming

that this amount of parallelism is typically available in computations of practical

interest, algorithm design can dispense altogether with communication concerns and

focus on the maximization of parallelism. The functional/data-�ow [Arv81] and the

Parallel RAM (PRAM) [KR90, FW78, Gol78] models of computation have often

been supported with similar arguments. Unfortunately, as argued in [BP97, BP99],

latency hiding is not a scalable technique, due to fundamental physical constraints.

Hence, parallel slackness does not really solve the communication problem.

On the other end of the spectrum, we could place the universality approaches,

whose objective is the development of machines (nearly) as e�cient as any other

machine of (nearly) the same cost (e.g., [Lei85, BBP99]). To the extent that a

universal machine with very small performance and cost gaps could be identi�ed,

one could adopt a model of computation su�ciently descriptive of such a machine,

and focus most of the algorithmic e�ort on this model. As technology approaches

the inherent physical limitations to information processing, storage, and transfer,

the emergence of a universal architecture becomes more likely. Economy of scale can

also be a force favoring convergence in the space of commercial machines. While this

appears as a perspective worthy of investigation, at this stage, neither the known

theoretical results nor the trends of commercially available platforms indicate an

imminent convergence.

In the middle of the spectrum, a variety of models proposed in the literature

can be viewed as variants of an approach aiming at realizing an e�ciency/port-

ability/design-complexity tradeo�. Well-known examples of these models are the

Local PRAM [ACS90], Bulk Synchronous Parallel (BSP) [Val90] and its re�nements

(e.g., [DlTK96, BPP07, BDP99]), LogP [CKP+96], Queuing Shared Memory (QSM)

[GMR99], and several others. These models aim at capturing by means of parameters

2.2. Models for communication hierarchy 17

relevant features common to most (reasonable) machines, while ignoring less relevant

features, speci�c of the various architectures. The hope is that performance of real

machines are largely determined by the modeled features, so that optimal algorithms

in the model translate into near optimal ones on real machines.

One of the most prominent models is the BSP model of Valiant [Val90]. It is

composed of P processing elements, each one equipped with a CPU and a local

memory, which communicate through a network. An algorithm is composed of a

sequence of supersteps. During a superstep a processor executes operations on data

residing in the local memory, sends/receives messages to/from other processors, and,

at the end, performs a global synchronization instruction. A message sent during

a superstep becomes available to the receiver only at the beginning of the next

superstep. If during a superstep the maximum number of operations performed by a

processor on local data is τ and each processor sends and receives at most h messages

(h-relation), then the superstep time is de�ned to be τ + gh + l, where parameters

g and l account for the inverse of the bandwidth and for latency/synchronization

costs, respectively.

The BSP provides an elegant and simple way to deal with some of the most

important aspects of actual platforms: granularity of memory, non uniformity of

memory-access time, communication and synchronization's costs. For these rea-

sons the BSP has been regarded an optimal bridging model, that is, a model which

combines the following contrastant properties: usability, e�ectiveness, portability.

However, the BSP model makes a restrictive assumption on the interconnection net-

work: speci�cally, the cost of an h-relation depends only on the value of h and not

on the communication pattern. This assumption is not true in most interconnection

networks (e.g., multidimensional arrays and fat tree) where it is cheaper to move

information between near neighbors than distant nodes. The Decomposable-BSP

(D-BSP) model [DlTK96, BPP07] has been motivated by this consideration.

2.2.1 D-BSP model

The Decomposable-BSP was introduced by [DlTK96] and successively studied in

many papers (e.g., [BPP07, BPP99, BFPP01, FPP06, FPP03, Fan03]). It is an

extension of the BSP aiming at accounting for submachine locality. The D-BSP

described in this section is a variant of the one presented in the aforementioned papers

because it features a minimum block size for message exchanges. (A similar feature

was introduced in another extension of the BSP called BSP∗ [BDP99, BDadH98].)

The D-BSP(P,g,B), where g = (g0, g1, . . . glogP−1) and B = (B0, B1, . . . BlogP−1),

consists of P processing elements, P0, . . . , PP−1, each one equipped with a CPU and a

18 Chapter 2. Models for Memory and Communication Hierarchies

local memory, which communicate through a network. Speci�cally, for 0 ≤ i ≤ logP ,

the P processors are partitioned into 2i �xed and disjoint i-clusters Ci
0, C

i
1 . . . C

i
2i−1

of P/2i processors each, where the processors of a cluster are capable of commu-

nicating among themeselves independently of the other clusters. The clusters form

a hierarchical, binary decomposition tree of the D-BSP machine, in the sense that

C logP
j = {Pj}, for 0 ≤ j < P , and Ci

j = Ci+1
2j ∪ Ci+1

2j+1, for 0 ≤ i < logP and

0 ≤ j < 2i.

A D-BSP program consists of a sequence of labeled supersteps. In an i-superstep,

with 0 ≤ i < logP , each processor executes internal computation on locally held data

and sends/receives messages exclusively to/from processors within its i-cluster. The

superstep ends with a barrier, which synchronizes processors independently within

each i-cluster. It is assumed that each message contains a constant number of words,

and that messages sent in one superstep become available at the destinations only at

the beginning of the following superstep. Consider the execution of an i-superstep s

and let τ s ≥ 0 be the maximum number of operations (computation time) performed

by a processor during the local computation, and let wsjk be the number of words

Pj sends to Pk, with 0 ≤ j, k < P . Words exchanged between two processors in an

i-superstep can be envisioned as traveling within blocks of �xed size Bi (in words).

The block-degree hs of the i-superstep s is

hs = max
0≤j<P

{
max

(
P−1∑
k=0

dwsjk/Bie,
P−1∑
k=0

dwskj/Bie

)}
,

while its communication time is gihs. The communication time (resp., computation

time) of an algorithm is the sum of the communication times (resp., computation

times) of its supersteps. Hence, the model rewards batched over �ne-grained com-

munications.

For simplicity, we take P and all of the Bi's to be powers of two. Also, we assume

that both the Bi's and the ratios gi/Bi are non increasing for 0 ≤ i < logP . It is

indeed reasonable that, in smaller submachines, smaller block sizes are used and

blocks can be dispatched at a faster rate.

Previous versions of D-BSP [DlTK96, BPP99] do not model blocked communi-

cation but include a latency parameter vector (l0, l1, . . . llogP−1), so that the com-

munication time of an i-superstep s, in which each processor sends or receives at

most hs words, is hsgi + li. The introduction of blocks makes the model more de-

scriptive of actual platforms and also compensates for the absence of the latency

parameters. Furthermore, in the general formulation of the D-BSP model [DlTK96],

processors can be aggregated into an arbitrary collection of clusters which can change

2.2. Models for communication hierarchy 19

dynamically: this feature makes it possible to incorporate the �ne details of point-to-

point network interconnections. However, the simple binary decomposition presented

above (referred as recursive D-BSP in [DlTK96]) makes algorithm design easier while

it e�ectively abstracts many prominent interconnections [BPP07].

As example, we describe a simple and optimal D-BSP algorithm for multiplying,

using only semiring operations, two n × n matrices distributed according with the

row-major layout among the processors2 (i.e., the n-MM problem).

Theorem 2.5. There exists an optimal D-BSP algorithm for the n-MM problem

whose communication and computation times on D-BSP(P, g,B) are respectively:

D(n, P, g,B) ∈ Θ

(
n2

P

logP−1∑
i=0

2i/2
gi
Bi

)
, (2.3)

T (n, P, g,B) ∈ Θ

(
n3

P

)
, (2.4)

when P ≤ n2 and Bi ∈ O (n2/P) for each i with 0 ≤ i < logP .

Proof. Let A and B be the two input matrices and let C be the output matrix,

which we suppose to be initially set to zero. The D-BSP algorithm is similar to

the cache-oblivious one described in Theorem 2.4: each matrix is divided into four

n/2 × n/2 submatrices, denoted by Ai,j and Bi,j, with 0 ≤ i, j ≤ 1; then eight

subproblems Ci,j ← Ai,k ·Bk,j are recursively solved in parallel in two rounds by the

four 2-clusters. In order to keep memory requirements at minimum, subproblems

are solved in the following order:

• First round: A0,0 ·B0,0, A0,1 ·B1,1, A1,1 ·B1,0, A1,0 ·B0,1;

• Second round: A0,1 ·B1,0, A0,0 ·B0,1, A1,0 ·B0,0, A1,1 ·B1,1.

In each round, each 2-cluster solves one subproblem. The recursion stops when the

subproblem size is n/
√
P × n/

√
P , that is, when the subproblem is solved by a

logP -cluster (a singleton processor); in this case a simple sequential algorithm is

used.

The value for D(n, P,g,B) given in Equation 2.3 is obtained by solving the

following recurrence (for notational convenience, we leave P , g and B out from

2An n × n matrix A is distributed according with the row-major layout among P processors
P0, P1, . . . PP−1 as follows: A is divided into P submatrices Ai,j of size dn/pe × min{n, n2/p},
with 0 ≤ i < n/dn/pe and 0 ≤ j < n/min{n, n2/p}; Ai,j is contained in processor Pk, where
k = i · n/min{n, n2/p}+ j.

20 Chapter 2. Models for Memory and Communication Hierarchies

D(n, i)):

D(n, i) ≤

 2D
(n

2
, i+ 2

)
+O

(
n2gi
PBi

)
if i < logP

0 if i ≥ logP

Hence, we get

D(n, i) ∈ O

n2

P

d(logP−i)/2e−1∑
j=0

2j
gi+2j

Bi+2j

 ,

from which Equation 2.3 follows by setting i = 0. The optimality of the communi-

cation time is a consequence of Corollary 4.10, and we refer to it for more details.

The correctness and the optimality of computation time can be easily derived. �

Chapter 3

Limits of Cache-Oblivious Rational

Permutations

A likely impossibility is always preferable

to an unconvincing possibility.

(Aristotle)

A number of optimal cache-oblivious algorithms [FLPR99, Dem02] and data

structures [ABF05] have been proposed in literature. However, in several cases,

optimality is attained under the so-called tall-cache assumption which requires the

cache size in words to be at least the square of the cache line size in words. Recently,

Brodal and Fagerberg [BF03] have proved that a cache-oblivious algorithm for sort-

ing cannot be optimal for every set of the values of the cache parameters. Moreover,

they have shown that no cache-oblivious algorithm for permuting can exhibit optimal

cache complexity for all values of the cache parameters, even under the tall-cache

assumption. Impossibility results of a similar �avor have been proved by Bilardi and

Peserico [BP01] in the context of DAG computations on the Hierarchical Memory

model [AACS87], which does not account for the spatial locality of reference. This

kind of results gives important theoretical insights on the inherent trade-o� between

e�ciency and portability among di�erent memory hierarchies of cache-oblivious al-

gorithms, and on the exploitation of the Translation Lookaside Bu�er (TLB), as

explained below.

The TLB is a memory used by platforms which support virtual memory [Rah02,

HP06]. Virtual memory means that each program has an unique logical address space

which is independent of the physical address space assigned to it at the execution

time. Both the logical and physical address spaces are divided into contiguous pages

of B words and, during the execution of a program, logical pages are randomly

mapped by the platform to physical pages. When a program refers to a logical

21

22 Chapter 3. Limits of Cache-Oblivious Rational Permutations

address x contained in the logical page y, the platform translates y into the physical

page address where the datum is actually stored. The translation is done by looking

up the page table, a data structure in main memory which contains the map between

logical and physical pages. An access to this structure for each memory request

would lead to an unacceptable slowdown: for this reason, the TLB is used to speed up

address translation. A TLB is a fast associative memory which holds ` translations of

recently-accessed logical pages (di�erent replacement policies can be adopted): if an

access to a logical address results in a translation contained in the bu�er (TLB hit),

there is no delay, otherwise a slow access to the page table (TLB miss) is required.

It is easy to see that the rationale behind a TLB is the exploitation of the locality

of reference, as in standard data caches. Furthermore, a TLB can be modelled as an

Ideal Cache IC(B`,B) [Kum03], where a cache line contains all the words within the

same virtual page, that is, by the B words that bene�t from the same translation

stored in the TLB. Programs are usually oblivious of TLB parameters, however a

TLB does generally not satisfy the tall-cache assumption1: indeed, typical values

of the parameters are ` ∼ 128 and B ∼ 4KB. Hence, impossibility results on

cache-obliviousness give also deep insights on TLB exploitation of algorithms (even

if cache-aware).

In this chapter we focus the attention on lower and upper bounds for performing

an important class of permutations in an oblivious fashion. Permuting a vector is

a fundamental primitive for many problems and, in particular, the so-called ratio-

nal permutations are widely used. A permutation is rational if it is de�ned by a

permutation of the bits of the binary representations of the vector indices. Matrix

transposition, bit-reversal and some permutations implemented in the Data Encryp-

tion Standard (DES) [FIP99] are notable examples of rational permutations. There

are some works in literature which deal with the e�cient implementation of speci�c

rational permutations in a memory hierarchy: for example, Frigo et al. [FLPR99]

propose a cache-oblivious algorithm for matrix transposition which is optimal under

the tall-cache assumption; Carter and Kang [CG98] give an optimal cache-aware

algorithm for the bit-reversal of a vector. To the best of our knowledge, the only

works in literature which propose a general approach to rational permutations are

[ACS87, ACFS94, Cor93b, Cor93a]. The �rst two papers propose e�cient algo-

rithms for performing any rational permutation in the blocked Hierarchical Memory

1More exactly, the unit of the IC parameters (B and M) is really the size of the data element of
an algorithm (e.g., double precision �oating-point numbers)[Fri08]. Hence a TLB can be modelled
as an IC(B`/s,B/s), where s denotes the size in words of a data element. If s is big (e.g., when
a data element consists of 3D vector �elds of pressure and velocity, and some scalars such as
temperature and voltage), a TLB (barely) satis�es the tall-cache assumption. On the other hand,
if a data element requires few words, the TLB is generally not tall.

3.1. Rational permutations 23

[ACS87] and in the Uniform Memory Hierarchy [ACFS94] models, respectively. In

[Cor93b, Cor93a] a lower bound on the number of disk accesses and an optimal al-

gorithm for performing rational permutations are given for the Parallel Disk model

[VS94] (which is similar to the EM model of [AV88]).

In this chapter we �rst present a lower bound on the work needed to execute any

family of rational permutations in the IC model with an optimal cache complexity.

The result requires a technical lemma which employs an adaptation of the argument

used in [AV88] to bound from below the number of disk accesses of an algorithm

for matrix transposition in the EM model. Then, we propose a new algorithm for

performing any rational permutation: this algorithm, di�erently from the one in

[Cor93b], is cache-oblivious, and exhibits optimal cache and work complexities under

the tall-cache assumption. Finally, we show that for certain families of rational

permutations (including matrix transposition and bit-reversal) there is no cache-

oblivious algorithm which achieves optimality for every set of the values of the cache

parameters. To this purpose we follow a similar approach to the one employed

in [BF03]. Speci�cally, let A be a cache-oblivious algorithm for a speci�c class

of rational permutations and consider the two sequences of misses generated by its

executions on two di�erent ICs, where one model satis�es a the tall-cache assumption

while the other does not. We simulate these two executions in the EM model and

obtain a new EM algorithm solving the same problem asA. By adapting the technical
lemma given in the argument for bounding from below the work complexity, we

conclude that A cannot be optimal in both ICs.

The chapter is organized as follows. In Section 3.1 we give a formal de�ni-

tion of rational permutation. In Section 3.2 we present the lower bound on the

work complexity and the aforementioned technical lemma. In Section 3.3 we de-

scribe the cache-oblivious algorithm for performing rational permutations. In Sec-

tion 3.4 we present the simulation technique and apply it to prove the limits of any

cache-oblivious algorithm performing certain families of rational permutations. An

overview of the EM and IC models has been given in Chapter 2.

The results presented in this chapter were published in a preliminary version in

[Sil06] and in the �nal form in [Sil08].

3.1 Rational permutations

An N-permutation ΠN is a bijective function from and to the set {0, . . . , N − 1}.
This paper focuses on rational permutations, de�ned as follows. Let N = 2n and

denote with σ an n-permutation and with (ai,n−1, . . . , ai,0) the binary representation

24 Chapter 3. Limits of Cache-Oblivious Rational Permutations

of the value i, where 0 ≤ i < N and ai,0 denotes the least signi�cant bit (LSB). The

rational N -permutation Πσ
N maps each value i, with 0 ≤ i < N to the value whose

binary representation is (ai,σ(n−1), . . . , ai,σ(0)). We refer to σ as the bit-permutation

de�ning Πσ
N , and denote with σ−1 its inverse. Note that the inverse of Πσ

N is Π
(σ−1)
N .

In the remaining part of this section we de�ne some concepts related to rational

permutations that are used later in the chapter.

Given an n-permutation σ and an index j, with 0 ≤ j < n, we de�ne the

following sets of bit positions which, in some sense, provide a measure of how far

bits are permuted by σ:

• j-outgoing set : OUT (j, σ) = {k : (k < j) ∧ (σ−1(k) ≥ j)};

• j-incoming set : IN (j, σ) = {k : (k ≥ j) ∧ (σ−1(k) < j)}.

For convenience, we impose OUT (j, σ) = IN (j, σ) = ∅ when j ≥ n. We call a bit

position in OUT (j, σ) (resp., IN (j, σ)) j-outgoing bit position (resp., j-incoming

bit position). Observe that σ−1(k) denotes the position where k is permuted, then

OUT (j, σ) contains the positions of the j LSBs that are permuted by σ in positions

bigger or equal than j, while IN (j, σ) contains the positions of the j most signi�-

cant bits (MSBs) that are permuted in positions smaller than j. It is evident that,

if OUT (j, σ) positions of the j LSBs are permuted into the (n − j) MSBs, then

OUT (j, σ) positions of the (n− j) MSBs must be permuted into the j LSBs: hence

|OUT (j, σ)| = |IN (j, σ)|. Thus, we de�ne the j-cardinality ζ(j, σ) as the cardinality

of OUT (j, σ) (or IN (j, σ) equivalently).

Let V = V [0], V [1], . . . , V [N−1] be a vector of N entries. An algorithm performs

the N -permutation ΠN on V if it returns a vector U , which does not overlap with V ,

such that U [i] = V [ΠN(i)] for each i, with 0 ≤ i < N . Note that V [i] is permuted into

U [Π−1
N (i)], where Π−1

N is the inverse of ΠN . We suppose that a vector entry requires

one machine word and a word su�ces to represent the index of a vector entry. We

also assume that the entries of any vector are stored in consecutive memory locations,

sorted by indices, and that the �rst entry of a vector stored in the memory (resp.,

disk) of the IC(M,B) (resp., EM(M,B)) model is aligned with a B-block.

Let Σ denote an in�nite set of permutations which contains at most one2 n-

permutation for each n ∈ N. An algorithm performs the rational permutations

de�ned by Σ if, when given in input an n-permutation σ ∈ Σ and a vector V of

N = 2n entries, it performs Πσ
N on V . For each N = 2n such that there exists an

2The results in this chapter can be extended to the case where Σ contains an arbitrary number
of n-permutations for any value of n ∈ N. However, for simplicity, we assume that there is at most
one n-permutation in Σ for each value of n ∈ N.

3.1. Rational permutations 25

n-permutation σ ∈ Σ, we denote by ζΣ(j,N) the j-cardinality ζ(j, σ). The above def-

inition allows us to use the asymptotic notation in the results given in the subsequent

sections, when the asymptotics are made with respect to N , hence n.

Let us see some notable examples of rational permutations. Let V be a vector

representing a
√
N ×

√
N matrix stored in a row-major layout, with N = 2n and n

even. Transposing the matrix stored in V is equivalent to performing the rational

permutations de�ned by ΣT = {τn : ∀ n > 1 and n even}, where

τn(j) =
(
j +

n

2

)
mod n. (3.1)

Since the j-outgoing and j-incoming sets of τn are

OUT (j, τn) =

∅ if j = 0

{0, . . . , j − 1} if 0 < j ≤ n
2

{j − n
2
, . . . n

2
− 1} if n

2
< j < n

,

IN (j, τn) =

∅ if j = 0

{n
2
, . . . , n

2
+ j − 1} if 0 < j ≤ n

2

{j, . . . n− 1} if n
2
< j < n

, (3.2)

the j-cardinality of ΣT is

ζΣT (j, 2n) = min{j, n− j}. (3.3)

Another interesting example is provided by the bit-reversal of a vector, which arises

from the Fast Fourier Transform [CLRS01]. The bit-reversal is equivalent to the

rational permutations de�ned by ΣR = {ρn,∀ n ≥ 1}, where

ρn(j) = n− j − 1.

The j-outgoing and j-incoming sets of a bit-permutation ρn are

OUT (j, ρn) =

∅ if j = 0

{0, . . . , j − 1} if 0 < j ≤
⌊
n
2

⌋
{0, . . . , n− j − 1} if

⌊
n
2

⌋
< j < n

,

26 Chapter 3. Limits of Cache-Oblivious Rational Permutations

IN (j, ρn) =

∅ if j = 0

{n− j, . . . n− 1} if 0 < j ≤
⌊
n
2

⌋
{j, . . . , n− 1} if

⌊
n
2

⌋
< j < n

.

Hence, the j-cardinality of ΣR is

ζΣR(j, 2n) = min{j, n− j}. (3.4)

3.2 Lower bounds

In this section we derive the Ω (N +NζΣ(logB,N)/ log(1 +M/B)) lower bound on

the work complexity of any algorithm which performs a given family Σ of rational

permutations with optimal cache complexity. To this purpose, we de�ne a potential

function and prove a technical lemma that provides an upper bound on the increase

of the potential due to a miss. This result is an adaptation of a technical result given

in [AV88] for bounding from below the number of disk accesses of an algorithm for

matrix transposition in the EM model. The lower bound on the cache complexity

given in [Cor93b] can be proved as a corollary of this technical lemma. Finally, we

prove that the cache-aware algorithm obtained by adapting the one given in [Cor93a]

for the EM model exhibits optimal cache and work complexities when executed on

an IC(M,B) for each M and B.

Let Σ be an in�nite set of n-permutations de�ned as in Section 3.1, and consider

an algorithm for IC(M,B) which is able to perform any rational N -permutation

de�ned by Σ on a vector of N = 2n entries. We denote with QΣ(N,M,B) the

cache complexity of this algorithm, and with V and U the input and output vectors,

respectively. (Distinct areas of the RAM in the IC(M,B) machine are reserved for

storing vectors V and U .)

We remind that the output vector U consists of N/B B-blocks and the i-th B-

block, with 0 ≤ i < N/B, contains entries U [iB, . . . , (i+1)B−1]. We de�ne the i-th

target group, with 0 ≤ i < N/B, to be the set of entries of V which will be mapped

by the permutation into the i-th B-block of U , that is, into U [iB, . . . , (i+ 1)B − 1].

We de�ne the following convex function:

f(x) =

{
x log x if x > 0

0 if x = 0
. (3.5)

Let γ be a B-block of the memory (if there is a copy of the block in cache, we

refer to that copy). The togetherness rating of γ (Cγ(q)) and the potential function

3.2. Lower bounds 27

(POT (q)) after q misses are de�ned as:

Cγ(q) =

N/B−1∑
i=0

f(xγ,i), POT (q) =
∑

∀B-block γ

Cγ(q),

where xγ,i denotes the number of entries in γ belonging to the i-th target group

just before the (q + 1)-st miss3. As proved in [Cor93b], the values of the potential

function at the beginning and at the end of the algorithm are given by the following

equations:

POT (0) = N log

(
B

2ζΣ(logB,N)

)
, POT (QΣ(N,M,B)) = N logB. (3.6)

Let ∆POT (q) denote the increase in potential due to the q-th miss, with 1 ≤ q ≤
QΣ(N,M,B), that is ∆POT (q) = POT (q) − POT (q − 1). The following lemma

provides an upper bound on ∆POT (q), that is, the maximum increase due to a

rearrangement of the entries in cache after the q-th miss.

Lemma 3.1. Let γ be the block fetched into the cache as a consequence of the q-th

miss, and C be the set of at most M/B − 1 blocks residing in cache with γ. Denote

with W the number of entries that are in γ just before the q-th miss and are in a

block in C when γ is evicted from the cache, or vice versa. Then,4

∆POT (q) ≤ B +W log
2eM

W
(3.7)

for each q, with 1 ≤ q ≤ QΣ(N,M,B).

Proof. If there is no empty cache line when γ is fetched, then a block is evicted

from the cache, but this operation does not a�ect the potential function. Block γ

exchanges entries with blocks in C without incurring any miss: then, at most M/B

blocks can increase their togetherness ratings before the next miss. We consider

only data exchanged between γ and blocks in C, while we ignore the increase in the

potential function due to rearrangements between two blocks α and β in C since

it was considered when β was fetched in cache (if we suppose that β was fetched

after α). Indeed, data movements after a miss can be reorganized in two rounds as

follows: in the �rst round, data are moved within blocks in C; in the second round,

data are moved between γ and blocks in C. Since we are considering the maximum

increase in the potential function after each miss, the growth of the potential during

3If there is no (q + 1)-st miss, we consider the end of the algorithm.
4We denote with e the Napier's constant.

28 Chapter 3. Limits of Cache-Oblivious Rational Permutations

the �rst round has already been considered (otherwise, there would exist a better

organization of data in cache which increases the potential). We use the following

notation:

• mα,i: number of entries in block α belonging to the i-th target group just before

the q-th miss, with α ∈ C ∪ {γ} and 0 ≤ i < N/B;

• wα,β,i: number of entries belonging to the i-th target group which are in block

α just before the q-th miss, and are in block β just before γ is evicted, with

α, β ∈ C ∪{γ}, α 6= β and and 0 ≤ i < N/B. (Actually, we are interested only

in wγ,α,i and wα,γ,i, with α ∈ C.)

• wα,i = wα,γ,i − wγ,α,i, with α ∈ C.

By the de�nition of potential function, the increase in potential is

∆POT (q) =
∑

α∈C∪{γ}

(Cα(q)− Cα(q − 1))

=

N/B−1∑
i=0

(
f

(
mγ,i +

∑
α∈C

wα,i

)
− f (mγ,i) +

∑
α∈C

f (mα,i − wα,i)− f (mα,i)

)
.

We partition the target groups into two sets P and R: the i-th target group belongs

to P if and only if
∑

α∈C wα,i ≥ 0, while it belongs to R otherwise. Let:

WP =
∑
i∈P

∑
α∈C

wα,i WR = −
∑
i∈R

∑
α∈C

wα,i.

Note that WP + WR ≤ W . We can assume without loss of generality that, for each

α ∈ C, wα,i ≥ 0 if i ∈ P and wα,i ≤ 0 if i ∈ R. Indeed, since
∑

α∈C wα,i ≥ 0, entries

in C can be reorganized in such a way that each wα,i is non negative. Similarly, we

can assume wα,i ≤ 0 if i ∈ R. Observe that the ∆POT (q) computed in such a way

is not smaller that the one yielded in the general case.

The mα,i values are limited by the constraints below:∑
i∈P

mγ,i ≤ B −WP ,
∑
α∈C

∑
i∈R

mα,i ≤M −WR. (3.8)

Then, by de�ning ∆POTT (q), with T ∈ {P,R}, as

∆POTT (q) =
∑
i∈T

(
f

(
mγ,i +

∑
α∈C

wα,i

)
− f (mγ,i) +

∑
α∈C

f (mα,i − wα,i)− f (mα,i)

)

we have that ∆POT (q) = ∆POTP (q) + ∆POTR(q).

3.2. Lower bounds 29

When i ∈ P , we have wα,i ≥ 0 and, by Lemma A.1, f (mα,i − wα,i)− f (mα,i) ≤
−f (wα,i). Then,

∆POTP (q) ≤
∑
i∈P

[
f

(
mγ,i +

∑
α∈C

wα,i

)
− f (mγ,i)−

∑
α∈C

f (wα,i)

]
.

By Inequalities 3.8 and Corollary A.4, an upper bound on ∆POTP (q) is obtained by

plugging mγ,i = (B −WP)/|P | and wα,i = WP/(|P ||C|) into the previous equation:

∆POTP (q) ≤ B log
B

|P |
− (B −WP) log

B −WP

|P |
−WP log

WP

|P ||C|

≤ (B −WP) log
B

B −WP

+WP log
B|C|
WP

≤ B +WP log
M

WP

, (3.9)

since |C| < M/B.

When i ∈ R, we have wα,i ≤ 0 and, by Lemma A.1, f
(
mγ,i +

∑
α∈C wα,i

)
−

f (mγ,i) ≤ −
∑

α∈C f (−wα,i). Therefore, we have:

∆POTR(q) ≤
∑
i∈R

∑
α∈C

[f (mα,i − wα,i)− f (mα,i)− f (−wα,i)] .

By Lemma A.3 an upper bound on ∆POTR(q) is obtained by setting mα,i = (M −
WR)/(|R||C|) and wα,i = −WR/(|R||C|). Then:

∆POTR(q) ≤M log
M

|R||C|
− (M −WR) log

M −WR

|R||C|
−WR log

WR

|R||C|

≤ (M −WR) log

(
1 +

WR

M −WR

)
+WR log

M

WR

≤ WR log
eM

WR

, (3.10)

since (1 + 1/x)x ≤ e if x ≥ 1.

By Equations 3.10 and 3.9, and the fact that WR + WP ≤ W , we derive the

following upper bound:

∆POT (q) ≤ B +WP log
M

WP

+WR log
eM

WR

≤ B +W log
2eM

W
.

�

Corollary 3.2. The increase in the potential function due to the q-th miss, with

30 Chapter 3. Limits of Cache-Oblivious Rational Permutations

1 ≤ q ≤ N/B, is upper bounded by 2B log 2eM
B

.

Proof. When a block γ is fetched into the cache, at most 2B entries are exchanged be-

tween γ and the other blocks residing in cache. The corollary follows from Lemma 3.1

by setting W = 2B. �

The following theorem restats the lower bound proved in [Cor93b, Theorem 2.23].

Theorem 3.3. Let Σ be an in�nite set of permutations which contains at most

one n-permutation for each n ∈ N. An algorithm which performs any rational N-

permutation Πσ
N de�ned by an n-permutation σ ∈ Σ requires

Ω

(
NζΣ(logB,N)

B log(1 +M/B)
+
N

B
+ 1

)
(3.11)

misses on an IC(M,B), for each value of M and B. 5

Proof. The Ω (N/B + 1) lower bound is straightforward because the input and output

vectors are distinct. The �rst term of Equation 3.11 follows from Corollary 3.2 and

Equations 3.6 since

QΣ(N,M,B)∑
q=1

∆POT (q) ≥ POT (QΣ(N,M,B))− POT (0)

2B log
2eM

B
QΣ(N,M,B) ≥ NζΣ(logB,N),

which yields

QΣ(N,M,B) ≥ NζΣ(logB,N)

2B log 2eM
B

.

�

An obvious lower bound on the work complexity of an algorithm performing

rational permutations is Ω (N) since N entries have to be moved from the input

vector V to the output vector U . Moreover, this work complexity is attained by

the naïve algorithm which reads V sequentially and moves each entry V [i] directly

into U [Πσ−1

N (i)] (we remind that Πσ−1

N is the inverse of Πσ
N), but this algorithm is

not cache-optimal. We wonder whether there is a cache-optimal IC algorithm whose

5Note that the lower bound given in [Cor93b] is Ω
(
N max{ζΣ(logM,N),ζΣ(logB,N)}

B log(M/B) + N
B + 1

)
, but

it easy to see that it is asymptotically equivalent to Equation 3.11.

3.2. Lower bounds 31

work complexity is Θ (N) for each value of IC parameters. The following theorem

states that such an algorithm cannot exist.

Theorem 3.4. Let Σ be an in�nite set of permutations which contains at most one

n-permutation for each n ∈ N. Consider an algorithm which performs any rational

N-permutation Πσ
N de�ned by an n-permutation σ ∈ Σ and whose cache complexity

is

QΣ(N,M,B) ∈ Θ

(
NζΣ(logB,N)

B log(1 +M/B)
+
N

B
+ 1

)
,

on an IC(M,B), for each value of M and B. Then its work complexity is

WΣ(N,M,B) ∈ Ω

(
NζΣ(logB,N)

log(1 +M/B)
+N

)
(3.12)

when M/B > b, for a suitable constant b > 1.

Proof. If ζΣ(logB,N) ≤ log(1 + M/B), Equation 3.12 becomes the Ω (N) lower

bound. Suppose ζΣ(logB,N) > log(1 + M/B), and let c and d be two suitable

constants such that

c
NζΣ(logB,N)

B log(1 +M/B)
≤ QΣ(N,M,B) ≤ d

NζΣ(logB,N)

B log(1 +M/B)
. (3.13)

Denote with Q′Σ(N,M,B) the number of misses each of which increases the potential

by at least (B/2d) log(1 + M/B). We claim that Q′Σ(N,M,B) = Θ (QΣ(N,M,B)).

Let ∆POT be the upper bound given in Corollary 3.2 on the increase in the potential

function due to a miss, and let ∆POT1 = (B/2d) log(1 +M/B). Then,

POT (Q)−POT (0) ≤

≤ (QΣ(N,M,B)−Q′Σ(N,M,B)) ∆POT1 +Q′Σ(N,M,B)∆POT

≤ QΣ(N,M,B)∆POT1 +Q′Σ(N,M,B)∆POT

From Equations 3.6 and Inequality 3.13, we derive

Q′Σ(N,M,B)

(
2B log

(
2eM

B

))
≥ NζΣ(logB,N)− dNζΣ(logB,N)

2d
,

which implies

Q′Σ(N,M,B) ∈ Ω

(
NζΣ(logB,N)

B log(1 +M/B)

)
.

Let q be a miss which increases the potential by at least ∆POT1, and let γ be the

32 Chapter 3. Limits of Cache-Oblivious Rational Permutations

block fetched into the cache in the q-th miss. By Lemma 3.1, if at most W entries

are exchanged between γ and the other blocks resident in cache with γ, the potential

increases by at most (B+W log(2eM/W)). IfM/B ≥ b for a suitable constant b > 1

and W < B/4d, then (B + W log(2eM/W)) < ∆POT1, which is a contradiction.

Then W = Θ (B). Since an IC operation moves only a constant number of words

between blocks, there are at least Ω (B) operations per miss. The theorem follows. �

Corollary 3.5. Let Σ be an in�nite set of permutations which contains at most one

n-permutation for each n ∈ N. Each rational N-permutation Πσ
N , de�ned by an

n-permutation σ ∈ Σ, can be performed by an optimal cache-aware algorithm with

work complexity

W (N,M,B) ∈ Θ

(
Nζ(logB, σ)

log(1 +M/B)
+N

)
,

and cache complexity

Q(N,M,B) ∈ Θ

(
Nζ(logB, σ)

B log(1 +M/B)
+
N

B
+ 1

)
,

on an IC(M,B), for each value of M and B.

Proof. An optimal algorithm for performing a rational permutation Πσ
N in the Par-

allel Disk model [VS94] with p disks is given in [Cor93a]. By setting p = 1, this

algorithm translates automatically into an EM algorithm; then, by removing all I/O

operations, the algorithm becomes a cache-aware IC algorithm. Clearly, the number

of block transfers performed by the optimal o�-line policy of the IC model cannot be

bigger than the number of disk accesses performed in the Parallel Disk model with

p = 1. This cache-aware algorithm is composed of ζ(logB, σ)/(B log(1 + M/B))

phases, each of which requires Θ (N) work and Θ (N/B) misses. By Theorems 3.3

and 3.4, this algorithm exhibits optimal cache and work complexities on an IC(M,B),

for each value of M and B. �

Corollary 3.6. Matrix transposition and bit-reversal can be performed by an optimal

cache-aware algorithm with work complexity

W (N,M,B) ∈ Θ

(
N log min{B,N/B}

log(1 +M/B)
+N

)
,

3.3. Cache-oblivious algorithm for rational permutations 33

and cache complexity6

Q(N,M,B) ∈ Θ

(
N log min{B,N/B}
B log(1 +M/B)

+
N

B
+ 1

)
, (3.14)

on an IC(M,B), for each value of M and B.

Proof. The statement follows by Corollary 3.5 and Equations 3.3 and 3.4. �

3.3 Cache-oblivious algorithm for rational permuta-

tions

In this section we propose an optimal cache-oblivious algorithm which performs each

rational permutation Πσ
N on a vector V of N = 2n entries, where σ denotes an n-

permutation. It incurs Θ (N/B) misses and requires Θ (N) work on an IC(M,B)

that satis�es the tall-cache assumption. We also describe an e�cient cache-oblivious

algorithm for computing all the values Πσ
N(i), with 0 ≤ i < N , since the computation

of any such value cannot be considered as an elementary operation.

3.3.1 Computing the values of a rational permutation

Let N = 2n and let Πσ
N be the rational permutation de�ned by the n-permutation σ.

In this subsection we describe an algorithm which computes a vector P of N entries,

where P [i] = Πσ
N(i) for each i, with 0 ≤ i < N . The algorithm derives Πσ

N(i) from

Πσ
N(i − 1) (note that Πσ

N(0) = 0 for each σ), comparing the binary representations

of i and i− 1.

Speci�cally, the algorithm uses four vectors:

• S where S[j] = σ(j) for each j, with 0 ≤ j < n;

• I where I[j] = σ−1(j) for each j, with 0 ≤ j < n;

• P where, at the end of the algorithm, P [i] = Πσ
N(i) for each i, with 0 ≤ i < N ;

• A where A[j] stores the j-th bit of the binary representation of the current

index i, with 0 ≤ j < n and 0 ≤ i < N (A[0] is the LSB).

6 In [AV88] a lower bound on the I/O complexity of matrix transposition in the EM model is

provided, which is Ω
(
N log min{M,

√
N,N/B}

B log(1+M/B) + N
B + 1

)
. This is also a valid lower bound on the cache

complexity of matrix transposition in the IC model, and coincides with Equation 3.14.

34 Chapter 3. Limits of Cache-Oblivious Rational Permutations

INPUT: a vector S of n entries which represents the n-permutation σ;
OUTPUT: a vector P of N entries, with N = 2n, where P [i] = Πσ

N (i) for each
i, with 0 ≤ i < N ;

1: Compute I from S through Mergesort;
2: Set all entries of A to 0;
3: P [0]← 0;
4: N ← 2n;
5: for i = 1 to N − 1 do

6: P [i]← P [i− 1];
7: j ← 0;
8: while A[j] = 1 do
9: A[j]← 0; // The j-th bit of i is set to 0

10: P [i]← P [i]− 2I[j]; // The I[j]-th bit of P [i] is set to 0

11: j ← j + 1;
12: A[j]← 1; // The j-th bit of i is set to 1

13: P [i]← P [i] + 2I[j]; // The I[j]-th bit of P [i] is set to 1

Figure 3.1: Cache-oblivious algorithm for computing the values of a bit-permutation
σ.

More succinct data structures can be adopted, but we maintain the ones above for

the sake of simplicity. The input of the algorithm is S (i.e., the bit-permutation

σ), while the output is P . Note that I can be computed from S through sorting.

The algorithm for computing P is divided into N − 1 stages: in the i-th stage, with

0 < i < N , the algorithm adds 1 (modulo N) to the binary representation of i − 1

stored in A, and derives P [i] from P [i− 1] according to the di�erences between the

binary representations of i and i− 1. The pseudocode for the algorithm is reported

in Figure 3.1. Note that the algorithm is cache-oblivious and based on the binary

counter [CLRS01].

Theorem 3.7. The work and cache complexities of the algorithm in Figure 3.1 are:

W (N,M,B) ∈ Θ (N) , (3.15)

Q(N,M,B) ∈ Θ

(
N

B

)
(3.16)

on an IC(M,B), for each value of M and B such that M/B ≥ 4.

Proof. The vector I can be e�ciently computed through Mergesort with work com-

plexity o (N) and cache complexity o(N/B) [BF03].

In order to bound the cache complexity of the for loop (Steps 5-13), we describe a

particular replacement policy for the cache and compute the cache complexity using

this policy: since the IC model adopts an optimal o�-line replacement policy, the

actual cache complexity cannot be larger than the one achieved by the policy we

3.3. Cache-oblivious algorithm for rational permutations 35

describe. We suppose the cache to have at least four lines, and we associate the

vectors I, P and A with three distinct cache lines: that is, there is exactly one cache

line for all the constituent blocks of each vector. The fourth line is used for support

variables. Since the entries of P are required in sequential order, each constituent

block of P is fetched only once into the line associated with P . Therefore, the number

of misses due to P is Θ (N/B).

Let αi be the memory block which contains entries A[iB], . . . , A[(i + 1)B − 1],

with 0 ≤ i < dn/Be. When an entry A[iB+ k], with 0 ≤ i < dn/Be and 1 ≤ k < B,

is required, the corresponding block αi is in cache since the previous required A's

entry was A[iB + k − 1], which also belongs to αi. On the other hand, when A[iB]

is referenced, block αi is not in cache and a miss occurs. Since A[j] �ips N/2j times,

with 0 ≤ j < n, during the course of the algorithm [CLRS01], each block αi is fetched

into the cache N/2iB times. Therefore, the number of misses due to A is Θ(N/2B).

Since I[j] is read only after A[j] for each j, with 0 ≤ j < n, the upper bound for A is

also valid for I. Then, the number of misses due to I is Θ(N/2B). Equation 3.16 fol-

lows. Since there are Θ(B) operations for each block, Equation 3.15 follows as well. �

3.3.2 Performing a rational permutation

In this subsection we present a cache-oblivious algorithm which performs any rational

permutation Πσ
N on a vector V of N = 2n entries, where σ and V are given as input.

As usual, U denotes the output vector.

Before describing the algorithm, note that the recursive cache-oblivious algorithm

for matrix transposition described in [FLPR99] moves each entry of the input matrix

to the corresponding entry of the output matrix in an order based on the Z-Morton

layout [CLPT99]. This particular access pattern to V minimizes the cache complexity

of the algorithm under the tall-cache assumption. In the same fashion, our algorithm

�rst derives an e�cient access pattern for V from σ, and then it moves each entry

of V , in the order speci�ed by the pattern, into the right entry of U . The access

pattern to V is de�ned by the n-permutation πσ: the i-th accessed element is V [j]

where j = Ππσ
N (i) for each i, with 0 ≤ i < N . The n-permutation πσ is computed by

the algorithm in Figure 3.2.7

The algorithm for performing the rational permutation Πσ
N on V is divided into

N steps: in the i-th step, the entry V [Ππσ
N (i)] is moved into U [Π

(σ−1)
N (Ππσ

N (i))], with

0 ≤ i < N . The pseudocode of the algorithm is given in Figure 3.3.

7For simplifying algorithms in Figures 3.2 and 3.3, we consider πσ, π
−1
σ , σ, σ−1 as vectors.

36 Chapter 3. Limits of Cache-Oblivious Rational Permutations

INPUT: an n-permutation σ;
OUTPUT: the n-permutation πσ;
1: Compute σ−1 from σ through Mergesort;
2: i = 0; j = 0;
3: while j < n do

4: if σ−1(i) ≥ i then {π−1
σ (j) = i; j = j + 1;}

5: if σ(i) > i then {π−1
σ (j) = σ(i); j = j + 1;}

6: i = i+ 1;
7: Compute πσ from π−1

σ through Mergesort;

Figure 3.2: Cache-oblivious algorithm for computing the values of a bit-permutation
πσ.

INPUT: an n-permutation σ, and a vector V of N = 2n entries;
OUTPUT: a vector U of N entries, where U [Πσ−1

N (i)] = V [i] for each i, with
0 ≤ i < N ;

1: Compute σ−1 from σ through Mergesort;
2: Compute πσ through algorithm in Figure 3.2;

3: Compute the values of the bit-permutations Ππσ
N and Π(σ−1)

N through algorithm
in Figure 3.1;

4: for i = 0 to N − 1 do

5: U [Π(σ−1)
N (Ππσ

N (i))] = V [Ππσ
N (i)];

Figure 3.3: Cache-oblivious algorithm for performing a rational permutation Πσ
N .

Let k be an arbitrary power of two, with 0 ≤ k ≤ N , and let l be an arbitrary

value with 0 ≤ l < N/k. Observe that, intuitively, the access pattern de�ned by

πσ guarantees that the k entries of V and U which are read and written during the

kl, . . . , k(l+ 1)− 1-st accesses, di�er in at most (log k)/2 of the n− (log k)/2 MSBs.

This implies that Θ
(√

k
)
cache lines of size Θ

(√
k
)
su�ce to permute the k entries

incurring O
(
k/B +

√
k
)
misses. An example of πσ is given later in Equation 3.17.

In order to prove the correctness and to evaluate the cache and work complexities

of the algorithm in Figure 3.3, we introduce the following two lemmas. The �rst one

shows a property of πσ and that the algorithm in Figure 3.2 is well de�ned, while

the second lemma proves that πσ is actually an n-permutation.

Lemma 3.8. Let σ be an n-permutation, π−1
σ (k) be the function computed in the

algorithm in Figure 3.2, and let %i,σ = {π−1
σ (k) : 0 ≤ k ≤ i + ζ(i + 1, σ)}. The

algorithm in Figure 3.2 is well de�ned and we have

%i,σ = {0, . . . , i} ∪ IN (i+ 1, σ).

Proof. In order to prove the lemma, we show by induction on i, with 0 ≤ i < n− 1,

that at the end of the i-th iteration of the algorithm in Figure 3.2, we have j =

3.3. Cache-oblivious algorithm for rational permutations 37

i+ ζ(i+ 1, σ) + 1 (which also implies that %i,σ is well de�ned at the end of the i-th

iteration) and %i,σ = {0, . . . , i} ∪ IN (i+ 1, σ). If i = 0 the claim is clearly true. Let

i > 0. Denote with j̃ the value of j at the beginning of the i-th iteration, that is

j̃ = (i − 1) + ζ(i, σ) + 1 by the inductive hypothesis. If i is assigned to π−1
σ (j̃) in

Step 4, then i /∈ %i−1,σ: otherwise i ∈ %i−1,σ and, in particular, i ∈ IN (i, σ). If σ(i) is

assigned to π−1
σ (j̃) or π−1

σ (j̃+1) in Step 5, then either σ(i) ∈ IN (i+1, σ)−IN (i, σ),

or σ(i) ∈ IN (i, σ). A simple case analysis shows that at the end of the i-th iteration

j = i+ ζ(i+ 1, σ) + 1 and %i,σ = {0, . . . , i} ∪ IN (i+ 1, σ).

Since i < n in each iteration, σ(i) and σ−1(i) in Lines 4 and 5 do exist and,

therefore, the algorithm is well de�ned. �

Lemma 3.9. Let σ be an n-permutation. Then the function πσ de�ned by the algo-

rithm in Figure 3.2 is an n-permutation.

Proof. We claim that π−1
σ (hence πσ) is a permutation. Suppose, for the sake of

contradiction, that there are two values j′ and j′′, 0 ≤ j′ < j′′ < n such that

π−1
σ (j′) = π−1

σ (j′′) = p. Clearly, p cannot be assigned to both π−1
σ (j′) and π−1

σ (j′′) by

two steps of the same kind. Then, suppose that p is assigned to π−1
σ (j′) in Step 4 and

to π−1
σ (j′′) in Step 5: by the if statements in Steps 4 and 5, it follows that σ−1(p) ≥ p

and p > σ−1(p), respectively, but this is a contradiction. In the same fashion, it can

be proved that p cannot be assigned to π−1
σ (j′) in Step 5 and to π−1

σ (j′′) in Step 4.

Therefore, π−1
σ is a permutation since there are n values and no duplicates. �

As example, consider the bit-permutation τn associated with the transposition of

a 2n/2 × 2n/2 matrix (Equation 3.1). Then π−1
τn is so de�ned:

π−1
τn (i) =

i
2

if i even and 0 ≤ i < n

n
2

+ i−1
2

if i odd and 0 ≤ i < n

. (3.17)

The access pattern de�ned by π−1
τn coincides with the Z-Morton layout, that is, with

the access pattern used in the cache-oblivious algorithm for matrix transposition

given in [FLPR99]. According with Lemma 3.8 and Equation 3.2, it is easy to see

that:

%i,τn =

{0, . . . , i} ∪ {n

2
. . . n

2
+ i} if 0 ≤ i < n

2

{0, . . . , n− 1} if n
2
≤ i < n− 1

.

38 Chapter 3. Limits of Cache-Oblivious Rational Permutations

Theorem 3.10. Let Σ be an in�nite set of permutations which contains at most one

n-permutation for each n ∈ N. The cache-oblivious algorithm in Figure 3.3 performs

each rational permutation Πσ
N de�ned by an n-permutation σ ∈ Σ, and requires

W (N,M,B) ∈ Θ (N) (3.18)

work and

Q(N,M,B) ∈

O

(
N

B

)
if M

B
≥ 21+ζ(logB,σ)

O

(
NB

M

)
if M

B
< 21+ζ(logB,σ)

(3.19)

misses on an IC(M,B), for each value of M and B such that M/B > 4.

Proof. The correctness of the algorithm in Figure 3.3 follows from the fact that πσ

and Ππσ
N are permutations.

We now analyze the work and cache complexities of the algorithm in Figure 3.3.

Recall that ζ(logB, σ) is the cardinality of OUT (j, σ) (or IN (j, σ) equivalently).

For simplifying the notation, we denote ζ(logB, σ) with ζ.

We now show that Steps 1, 2 and 3 require Θ (N) work and Θ (N/B) misses.

As argued in the proof of Theorem 3.7, the computation of the inverse of an n-

permutation requires o (N) work and o (N/B) misses. Thus, the computation of σ−1

and of the algorithm in Figure 3.2 (Steps 1-2) can be performed in o (N) operations

and o (N/B) misses. The computation of the values of Ππσ
N and Π

(σ−1)
N (Step 3)

requires linear work and Θ (N/B) misses (by Theorem 3.7).

We now upper bound the cache complexity of Steps 4-5, in which all the entries of

V are permuted into U . We distinguish between two cases: when the number M/B

of cache lines is bigger or smaller than 21+ζ . In both cases we analyze the number of

distinct blocks touched by a consecutive sequence (whose length is di�erent in each

case) of accesses to V and U in the order de�ned by πσ. We show that, in the �rst

case, Θ
(
2ζ
)
blocks of V and U are touched by B2ζ consecutive accesses while, in

the second case, O (M/B) blocks are touched by 2ϕM/(2B) accesses (ϕ is a suitable

value de�ned later).

Suppose M
B
≥ 21+ζ and partition the sequence of N accesses to V into N/(B2ζ)

segments. Let F i = {Ππσ
N (iB2ζ), . . . ,Ππσ

N ((i+ 1)B2ζ − 1)}, with 0 ≤ i < N/B2ζ , be

the set of the indices of the entries accessed in the i-th segment. By Lemma 3.8, the

binary representations of the values in F i di�er on (logB + ζ) bit positions, and ζ

of these are the (logB)-incoming bit positions of σ, which are among the log(N/B)

3.4. Limits of cache-oblivious rational permutations 39

MSBs by de�nition. Then, the B2ζ entries of V with indices in F i are distributed

among 2ζ blocks. Moreover, in the (logB + ζ) bit positions there are also ζ (logB)-

outgoing bit positions of σ. Then, by the de�nition of outgoing bit position, the

B2ζ entries are permuted into 2ζ blocks of the output vector U . Since there are at

least 21+ζ cache lines, the permutation of entries indexed by the values in Fi requires
Θ
(
2ζ
)
misses, and the permutation of the whole vector V requires Θ (N/B) misses.

Suppose M
B

< 21+ζ . Let ϕ be the maximum integer in [0, logB) such that

|OUT (logB, σ) ∩ OUT (ϕ, σ)| = log(M/2B), that is ϕ denotes the bigger bit po-

sition such that exactly log(M/2B) (logB)-incoming bit positions are permuted

into positions smaller than ϕ. Note that ϕ is well de�ned since |OUT (logB, σ)| =

ζ > log(M/(2B)). We use the previous argument, except for the segment length.

Speci�cally, partition the sequence of N accesses to V into N/(2ϕM/(2B)) seg-

ments and let F i = {Ππσ
N (i2ϕM/(2B)), . . . ,Ππσ

N ((i+ 1)2ϕM/(2B)− 1}, with 0 ≤ i <

N/(2ϕM/(2B)), be the set of the indices of the entries required in the i-th segment.

The binary representations of the values in F i di�er on ϕ + log(M/(2B)) bit posi-

tions, and (log(M/2B)) of these are (logB)-incoming bit positions of σ. Then the

2ϕM/(2B) entries of V with indices in F i are distributed among M/(2B) blocks.

An argument similar to the one used above proves that these 2ϕM/(2B) entries are

permuted into at most M/(2B) blocks of the output vector U . Therefore, the per-

mutation steps requires O (N/2ϕ) = O (NB/M) misses, since ϕ ≥ log(M/(2B)), and

Equation 3.19 follows. The proof of Equation 3.18 is straightforward. �

By Theorem 3.10 and the lower bounds on the work and cache complexities given

in Section 3.2, the cache-oblivious algorithm in Figure 3.3 is optimal when M/B ≥
21+ζ(logB,σ). Since ζ(logB, σ) ≤ logB, the tall-cache assumption (i.e., M ≥ B2) is

su�cient to guarantee cache and work optimality of the cache-oblivious algorithm for

each rational permutation. Recall that by Corollary 3.5, there exists a cache-aware

algorithm for performing rational permutations which exhibits optimal cache and

work complexities for all values of the IC parameters. In the next section, we will

show that an optimal cache-oblivious algorithm for all values of the IC parameters

cannot exist.

3.4 Limits of cache-oblivious rational permutations

Theorem 3.4 proves that the work complexity of a cache-optimal algorithm is ω(N)

when M/B ∈ o
(
2ζΣ(logB,N)

)
, and Θ (N) otherwise. Clearly, the work complexity of

a cache-oblivious algorithm is independent of the cache parameters (this is not the

40 Chapter 3. Limits of Cache-Oblivious Rational Permutations

case, in general, for cache complexity). Hence, a cache-oblivious algorithm cannot

have optimal work complexity for each value of M and B. One can wonder whether

there exists a cache-oblivious algorithm which is cache-optimal for each M and B,

regardless of the work complexity. In this section we will prove that such an algorithm

cannot exist. To this purpose we follow a similar approach to the one employed in

[BF03].

Let Σ be an in�nite set of permutations which contains at most one n-permutation

for each n ∈ N and let A be a cache-oblivious algorithm which performs any rational

N -permutation de�ned by an n-permutation σ ∈ Σ on a vector ofN entries. Consider

the two sequences of misses generated by the executions of A in two di�erent ICs,

where one model satis�es a particular assumption we will de�ne, while the other

does not. We simulate these two executions in the EM model and obtain a new EM

algorithm solving the same problem as A. By adapting the argument described in

Subsection 3.2 to bound from below the number of disk accesses, we conclude that

A cannot be optimal in both ICs.

3.4.1 The simulation technique

In this subsection we describe a technique for obtaining an EM algorithm from two

executions of a cache-oblivious algorithm in two di�erent IC models. The technique

is presented in a general form and is a formalization of the ad-hoc one employed in

[BF03] for proving the impossibility result for general permutations.

Consider two models C1=IC(M,B1) and C2 = IC(M,B2), where B1 < B2. For

convenience, we assume B2 to be a multiple of B1. Let A be a cache-oblivious

algorithm for an arbitrary problem and let Q1 and Q2 be its cache complexities

in the two models, respectively. We de�ne an algorithm A′ for EM(2M,B2) which

emulates in parallel the executions of A in both C1 and C2 and solves the same

problem as A.
Let us regard the memory in EM(2M,B2) as partitioned into two contiguous

portions of size M each, which we refer to as M1 and M2, respectively. In turn,

portion M1 is subdivided into blocks of B1 words (which we call B1-rows), and

portionM2 is subdivided into blocks of B2 words (which we call B2-rows), so that

we can establish a one-to-one mapping between the cache lines of C1 and the B1-rows

ofM1, and a one-to-one mapping between the cache lines of C2 and the B2-rows of

M2. Algorithm A′ is organized so that its I/Os coincide (except for some slight

reordering) with the I/Os performed by A in C2, and occur exclusively between the

disk and M2. On the other hand, A′ executes all operations prescribed by A on

3.4. Limits of cache-oblivious rational permutations 41

data inM1.
8 Since there are no I/Os betweenM1 and the disk, data are inserted

intoM1 by means of transfers of B1-rows betweenM1 andM2, which coincide with

the I/Os performed by A in C1.

Let us now see in detail how the execution of A′ in the EM(2M,B2) develops.

Initially all the words inM1 andM2 are empty, that is �lled with NIL values, and the

EM disk contains the same data as the memory of C2 (or C1 indistinguishably) with

the same layout (a one-to-one relation between the B2-blocks of C2 and the B2-blocks

of the disk can be simply realized). Let oi be the i-th operation of A, i = 1 . . . h.

The execution of A in Ci, 1 ≤ i ≤ 2, can be seen as a sequence Li of operations
interleaved with I/Os. Since operations in L1 and L2 are the same, we build a new

sequence L=Γ2
1Γ1

1o1 . . .Γ
2
jΓ

1
joj . . .Γ

2
hΓ

1
hohΓ

2
h+1Γ1

h+1. Each Γij, with 1 ≤ j ≤ h+ 1 and

1 ≤ i ≤ 2, is de�ned as follows:

• Γi1 is the sequence of I/Os that precede o1 in Li.

• Γij, 1 < j ≤ h, is the sequence of I/Os which are enclosed between oj−1 and oj

in Li.

• Γih+1 is the sequence of I/Os performed after oh in Li.

Note that a Γij can be empty. The length of L, denoted as |L|, is the sum of the

number h of operations and the size of all Γij, with 1 ≤ j ≤ h+ 1 and 1 ≤ i ≤ 2. Let

A′ be divided into |L| phases. The behavior of the j-th phase is determined by the

j-th entry lj of L:

1. lj is an operation: A′ executes the same operation inM1.

2. lj is an input of a B2-block (i.e., an input of L2): A′ fetches the same B2-block

from the disk into the B2-row ofM2 associated with the line used in C2.

3. lj is an input of a B1-block (i.e., an input of L1): let γ be such a B1-block and

γ′ be the B2-block containing γ. Since there is no prefetch in the IC model,

the next operation of A requires an entry in γ; thus γ′ must be in the cache of

C2, too. For this reason, we can assume that γ′ was, or has just been, fetched

into a B2-row ofM2. A′ copies γ in the right B1-row ofM1 and replaces the

copy of γ inM2 with B1 NIL values.

4. lj is an output of a B2-block (i.e., an output of L2): A′ moves the respective

B2-row ofM2 to the disk, replacing it with B2 NIL values.

8Note that the operations of A do not include I/Os since block transfers are automatically
controlled by the machine. Moreover, A's operations are the same no matter whether execution is
in C1 or C2.

42 Chapter 3. Limits of Cache-Oblivious Rational Permutations

5. lj is an output of a B1-block (i.e., an output of L1): let γ be such a B1-block

and γ′ be the B2-block containing γ. If γ′ is still inM2, then A′ copies γ from

M1 into γ′ and replaces γ's row with B1 NIL values. The second possibility

(i.e., γ′ is not inM2) can be avoided since no operations are executed between

the evictions of γ′ and γ. If some operations were executed, both blocks γ and

γ′ would be kept in cache (and so inM1 andM2). Therefore, we can suppose

γ was removed just prior to the eviction of γ′.

It is easy to see that every operation of A can be executed by A′ in M1, since

there is a one to one relation between the cache lines of C1 and the rows ofM1 (except

for the B1-blocks whose evictions from cache were anticipated, see �fth point). M2

is a quasi-mirror of C2, in the sense that it contains the same B2-blocks of C2 while

A is being executed, except for those sub B1-blocks which are also inM1. By rules

2 and 4, the I/O complexity of A′ is at most 2Q2 (note that a miss in the IC model

is equivalent to at most two I/Os in the EM model).

Let K = Q1B1/Q2; it is easy to see that K ≤ B2. Indeed, if K were greater

than B2, a replacement policy for C1 which requires Q2B2/B1 < Q1 misses would be

built from the execution of A in C2; but this is a contradiction since the replacement

policy of the IC model is optimal. A′ can be adjusted so that there are at most K

words exchanged between M1 and a B2-block in M2 before this block is removed

from the memory: it is su�cient to insert some dummy I/Os. This increases the I/O

complexity of A′ from 2Q2 to at most 2Q2 + 2Q1B1/K = 4Q2 I/Os. In particular,

there are at most 2Q2 inputs and 2Q2 outputs of B2-blocks.

We de�ne the working set W(q) after q I/Os as the content of M1 plus the

words in the corresponding B2-blocks ofM2 that will be used by A′ (moved toM1)

before the B2-blocks are evicted. When A′ fetches a B2-block from the disk, we can

suppose that the at most K entries which will be moved betweenM1 and the block

are immediately included in the working set.

Note that the EM algorithm A′ could not be implementable in practice; however,

since we are interested in lower bounding its I/O complexity, this is not relevant ex-

cept in the case where the arguments used for bounding suppose the implementability

of A′. The argument used in the following section is based on a potential function

and does not require the algorithm to be implementable.

3.4.2 Impossibility result for rational permutations

In this subsection we prove that a cache-oblivious algorithm which performs the

rational permutations de�ned by a set Σ cannot be optimal for each value of the

cache parameters.

3.4. Limits of cache-oblivious rational permutations 43

Theorem 3.11. Let Σ be an in�nite set of permutations which contains at most one

n-permutation for each n ∈ N, and N range over {2n : ∃ an n-permutation σ ∈ Σ}.
Consider a cache-oblivious algorithm A which performs any rational N-permutation

de�ned by an n-permutation σ ∈ Σ. If there exists a function g(N) ≤ log(δN), with

δ ∈ (0, 1), such that ζΣ(g(N), N) ∈ ω(1), then A cannot be cache-optimal for each

value of the M and B parameters.

Proof. We begin by asserting that a lower bound on the cache complexity in the IC

model translates into a lower bound on the I/O complexity in the EM model, and

vice versa, since the IC model adopts an optimal o�-line replacement policy [SCD02].

Moreover, the lower bound provided in Theorem 3.3 is tight since it can be matched

by an aware algorithm, as established in Corollary 3.5. Assume, for the sake of

contradiction, that A attains optimal cache complexity for each value of M and B.

In particular, consider two models C1=IC(M,B1) and C2 = IC(M,B2) where B2 is a

multiple of B1, and let Q1 and Q2 be the cache complexities of A in the two models,

respectively. We will show that B1 and B2 can be suitably chosen so that Q1 and

Q2 cannot be both optimal, thus reaching a contradiction. To achieve this goal, we

apply the simulation technique described in the previous subsection to A, and obtain

an algorithm A′ for the EM(2M,B2) solving the same problem as A. We then apply

an adaptation of Lemma 3.1 (which is based on a technical result given in [AV88] for

bounding from below the number of disk accesses of matrix transposition in the EM

model) to A′, and we prove the impossibility of the simultaneous optimality of A in

the two IC models. We denote with Q and QI the I/O complexity and the number

of inputs of B2-blocks, respectively, of A′; recall that Q ≤ 4Q2 and QI ≤ 2Q2.

As in Section 3.2, we de�ne the i-th target group, with 0 ≤ i < N/B2, to be

the set of entries that will ultimately be in the i-th B2-block of the output vector

(remember that it must be entirely in the disk at the end of A′). Let γ be a B2-block

of the disk or a B2-row ofM2; the togetherness rating of γ after q I/Os is de�ned

as:

Cγ(q) =

N/B2−1∑
i=0

f(xγ,i),

where xγ,i denotes the number of entries in γ belonging to the i-th target group just

before the (q+ 1)-st I/O, and f is the convex function given in Equation 3.5. These

entries are not included in the working set W(q) and are not NIL symbol. We also

44 Chapter 3. Limits of Cache-Oblivious Rational Permutations

de�ne the togetherness rating for the working set W(q) as:

CW(q) =

N/B2−1∑
i=0

f(si),

where si is the number of entries in the working set W(q) which belong to the i-th

target group just before the (q+ 1)-st I/O. The potential function of A′ after q I/Os
is de�ned as:

POT (q) = CW(q) +
∑
γ∈disk

Cγ(q) +
∑
γ∈M2

Cγ(q).

At the beginning and at the end of the algorithm the above de�nition is equivalent

to the one given in Section 3.2. Then by Equations 3.6,

POT (0) = N log(B2/2
ζΣ(logB2,N)), POT (Q) = N logB2.

Hence, POT (Q)− POT (0) = NζΣ(logB2, N).

We now bound the increase in the potential function due to the input of a B2-

block since the eviction of a block from the memory does not increase the potential.

Suppose that the q-th I/O is an input and a B2-block γ is fetched into a B2-row of

M2. Before the q-th input, the intersection between γ and the working setW(q−1)

was empty; after the input, at most K = Q1B1/Q2 entries of γ are inserted into

W(q − 1). We use the following notation:

• si: number of entries in the working set W(q − 1) belonging to the i-th target

group;

• ki: number of entries in γ belonging to the i-th target group just before the

q-th miss;

• wi: number of entries in the (at most) K words, inserted inW(q−1), belonging

to the i-th target group.

The si, ki and wi values are limited by the following constraints:

N/B2−1∑
i=0

si ≤ 2M −K,
N/B2−1∑
i=0

ki ≤ B2,

N/B2−1∑
i=0

wi ≤ K.

3.4. Limits of cache-oblivious rational permutations 45

The increase in the potential function due to the q-th miss (∆POT (q)) is:

∆POT (q) =

N/B2−1∑
i=0

[f(si + wi) + f(ki − wi)− f(si)− f(ki)] .

By Lemma A.1, we have that f(ki − wi)− f(ki) ≤ −f(wi). Thus,

∆POT (q) ≤
N/B2−1∑
i=0

[f(si + wi)− f(si)− f(wi)] . (3.20)

According with Corollary A.4 an upper bound on ∆POT (q) is obtained by setting

si = (2M −K)/(N/B2) and wi = K/(N/B2) in Inequality 3.20:

∆POT (q) ≤
N/B2−1∑
i=0

[
si log

si + wi
si

+ wi log
si + wi
wi

]
≤ K log e+K log

2M

K
= K log

2eM

K
,

since (1 + 1/x)x ≤ e if x ≥ 1. Let C1 be a cache with more than 2ζΣ(logB1,N) lines,

while C2 be a cache with less than 2ζΣ(logB2,N) lines. By Theorem 3.3, cN/B1 ≤
Q1 ≤ dN/B1 for two suitable positive constants c and d. Since the number of input

operations is QI ≤ 2Q2 (remember that the output of a block does not increase the

potential and that K = Q1B1/Q2), we have that

POT (Q)− POT (0) ≤
QI∑
q=1

∆POT (q) ≤ 2Q2K log
2eM

K
≤ 2dN log

2eMQ2

cN
.

By recalling that POT (Q)− POT (0) = N log 2ζΣ(logB2,N),

N log 2ζΣ(logB2,N) ≤ 2dN log
2eMQ2

cN
.

Hence,

Q2 ∈ Ω

(
N

2
ζΣ(logB2,N)

2d

M

)
. (3.21)

By setting B2 = δ′M and M = 2g(N)/δ′, for a constant δ, with 0 < δ′ < δ, we have

ζΣ(logB2, N) = ζΣ(g(N), N) ∈ ω(1),

46 Chapter 3. Limits of Cache-Oblivious Rational Permutations

which yields (the asymptotic is on N)

Q2 ∈ ω
(
N
ζΣ(g(N), N)

M

)
.

However, by optimality of A and Theorem 3.3, Q2 must be Θ
(
N ζΣ(g(N),N)

M

)
when

B2 = δ′M , which yields a contradiction. �

Corollary 3.12. There cannot exists a cache-oblivious algorithm for matrix trans-

position or bit-reversal that yields optimality for all values of the IC parameters.

Proof. Matrix transposition and bit-reversal are examples of rational permutations

which, by Equation 3.3 and 3.4, satisfy the hypothesis of Theorem 3.11 by setting

g(N) = dlog
√
Ne. Thus, Theorem 3.11 implies that cache-oblivious algorithms for

matrix transposition or the bit-reversal of a vector cannot exhibit optimal cache

complexity for all values of the cache parameters. �

Note that Theorem 3.11 do not rule out the existence of an optimal cache-

oblivious algorithm for some particular ranges of the cache parameters. Indeed by

Theorem 3.10, there exists an optimal cache-oblivious algorithm under the tall-cache

assumption.

Chapter 4

Network-Oblivious Algorithms

I'm totally, totally oblivious. Usually.

(Paul Hewitt)

As seen in Section 2.2, a number of parallel models aim at realizing an e�ciency/

portability/ design-complexity tradeo� by capturing features common to most ma-

chines through a number of parameters. One parameter present in virtually all

models is the number of processors, and most models also exhibit parameters de-

scribing the time required to route certain communication patterns. Increasing the

number of parameters, from just a small constant to logarithmically many in the

number of processors (like in the D-BSP), can considerably increase the e�ectiveness

of the model with respect to realistic architectures, such as point-to-point networks,

as extensively discussed in [BPP07]. However, a price is paid in the increased com-

plexity of algorithm design necessary to gain greater e�ciency across a larger class

of machines.

It is natural to wonder whether, at least for some problems, algorithms can be

designed that, while independent of any machine/model parameters, are nevertheless

e�cient for a wide range of such parameters. In other words, we are interested in

exploring the world of e�cient network-oblivious algorithms, in the same spirit as

the exploration of e�cient cache-oblivious algorithms proposed in [FLPR99].

Of course, the �rst step is to develop a framework where the concept of network-

obliviousness and of algorithmic e�ciency are precisely de�ned. The framework we

propose is based on three models of computation, each with a di�erent role, as brie�y

outlined next.

• Speci�cation model. This model, denoted by M(n), is a set of n CPU/memory

nodes, called processing elements (PEs), computing in supersteps, and able to

exchange messages. Network-oblivious algorithms will be formulated in this

47

48 Chapter 4. Network-Oblivious Algorithms

model. The number of PEs is chosen by the algorithm designer exclusively as

a function of the input size n. (Reasonably, n re�ects the amount of parallelism

of the algorithm at hand).

• Evaluation model. This model, denoted by M(p,B), has two parameters: the

number of processors, p, and a block size, B, which models the �xed payload

size of any message exchanged by two processors. As forM(n), the computation

is organized in supersteps. A cost function is de�ned, called the block degree of

a superstep, which, when summed over all supersteps of an algorithm, gives the

communication complexity of the algorithm. An M(n) algorithm will execute

on an M(p,B), with p ≤ n, by letting each M(p,B) processor carry out the

work of a pre-speci�ed set of n/p PEs of M(n).

The quality of a network-oblivious algorithm A, with input size n, is de�ned

with respect to the communication complexity HA(n, p,B) of its execution on

M(p,B), by measuring how close HA(n, p,B) comes to the minimum communi-

cation complexity H∗(n, p,B) achievable by any M(p,B) algorithm solving the

same problem as A. Algorithm A is optimal if HA(n, p,B) = O (H∗(n, p,B)),

for a suitably large range of (p,B) values.

• Execution machine model. This model aims at describing the set of platforms

on which we expect the network-oblivious algorithm to be actually executed.

Technically, we adopt for this role the block-based variant of the Decompos-

able Bulk Synchronous Parallel model, D-BSP(P, g,B), [BPP07] described in

Section 2.2.1, where g and B are vectors of length logP .

Fortunately, as shown in the next section, for a wide and interesting class of

network-oblivious algorithms, optimality with respect to the M(p,B) model,

for suitable ranges of (p,B), translates into optimality with respect to the

D-BSP(p, g,B), for suitable ranges of g and B. It is this circumstance that

motivates the introduction of the evaluation model, as a tool to substantially

simplify the performance analysis of oblivious algorithms.

To help placing our network-oblivious framework in perspective, it may be useful

to compare it with the well established cache-oblivious framework [FLPR99]. In

the latter, the algorithm formulation model is the Random Access Machine; the

algorithm evaluation model is the Ideal Cache model IC(M,B), a machine with only

one level of cache of size M and line length B; and the machine execution model is

a machine with a hierarchy of caches, each with its own size and line length. In the

cache-oblivious context, the simpli�cation in the analysis arises from the fact that,

4.1. The framework 49

under certain conditions, optimality on IC(M,B) for all values ofM and B translates

into optimality on multilevel hierarchies.

The structure of this chapter is as follows. In Section 4.1, we de�ne rigorously the

three models relevant to the framework and establish the key relations among them.

In Section 4.2, we illustrate the framework by deriving positive and negative results

on network-oblivious algorithms for key problems, such as matrix multiplication

and transposition, FFT, and sorting. We also show that matrix transposition does

not admit network-oblivious algorithms, for some range of parameters. The results

presented in this chapter were published in [BPPS07].

4.1 The framework

In this section, we introduce the models of computation for the formulation and

analysis of network-oblivious algorithms, and develop some key relations between

these models, which provide the justi�cation for the framework.

Speci�cation model. Let Π be a given computational problem and let n (for

simplicity, a power of two) be a suitable function of the input size. A network-

oblivious algorithm A for Π is designed for a complete network M(n) of n Processing

Elements (PEs), PE0, . . ., PEn−1, each consisting of a CPU and an unbounded local

memory. A consists of a sequence of labeled supersteps1, with labels in the integer

range [0, log n). For 0 ≤ i < log n and 0 ≤ j < n, in an i-superstep, PEj can perform

operations on locally held data, and send words of data only to any PEk whose index

k agrees with j in the i most signi�cant bits, that is, bj2i/nc ≤ k < bj2i/nc+ n/2i.

The superstep ends with a global synchronization.

Evaluation model. In order to analyze A's communication complexity on di�er-

ent machines, we introduce the machine model M(p,B), where the parameters p and

B are positive integers (for simplicity, powers of two). M(p,B) is essentially an M(p)

with a communication cost function parameterized by B, whose processing elements

are called processors and denoted as pj, with 0 ≤ j < p, to distinguish them from

those of M(n). Words exchanged between two processors in a superstep can be en-

visioned as traveling within blocks of �xed size B (in words). For each superstep we

de�ne the block-degree as the maximum number of blocks sent/received by a single

processor in that superstep. More formally, the block-degree of a superstep s where

1The results would hold even if, in the various models considered, supersteps were not explicitly
labeled. However, explicit labels can help reduce synchronization costs; they become crucial for
e�cient simulation of algorithms on point-to-point networks, especially those of large diameter.

50 Chapter 4. Network-Oblivious Algorithms

processor pj sends w
s
jk words to pk, with 0 ≤ j, k < p, is de�ned as

hs(p,B) = max
0≤j<p

{
max

(
p−1∑
k=0

dwsjk/Be,
p−1∑
k=0

dwskj/Be

)}
.

The communication complexity of an algorithm is the sum of the block-degrees of

its supersteps. Hence, the model rewards batched over �ne-grained communication.

The quantity hs = hs(p, 1) is also called the word-degree of superstep s. Clearly,

dhs/Be ≤ hs(p,B) ≤ hs. Although the network-oblivious framework is primarily

concerned with communication, we de�ne a cost function, called computation com-

plexity, which measures, in some sense, the degree of parallelism. The computation

complexity of an algorithm is the sum over all supersteps of the maximum number

of operations performed by a processor on locally held data during a superstep.

A network-oblivious algorithm A formulated for M(n) can be naturally executed

on an M(p,B) machine, for every 1 ≤ p ≤ n and for every B, by stipulating that

processor pj, with 0 ≤ j < p, of M(p,B) will carry out the operations of the n/p

consecutively numbered processing elements of M(n) starting with PE(n/p)j. Super-

steps with a label i < log p on M(n) become supersteps with the same label on

M(p,B); supersteps with label i ≥ log p become local computation. Let us number

the supersteps of A from 1 to S, where S is the number of supersteps executed by

the algorithm on M(p,B), and let hs(n, p,B) be the block-degree of the execution of

superstep s. The central quantity in our analysis is the communication complexity

HA(n, p,B) =
S∑
s=1

hs(n, p,B),

of A on an M(p,B), for varying p and B.

With regard to the computation complexity of a network-oblivious algorithm

for M(n), we observe that the simulation of a superstep s on M(p,B) requires

O ((n/p)(τ s + hs)) operations, where τ s is the maximum number of operations ex-

ecuted by a PE on locally held data and hs is the maximum number of words

sent/received by a PE (i.e, the word-degree on M(n, 1)); O ((n/p)hs) is the cost

of a naïve message dispatching. Without loss of generality we assume hs ∈ O (τ s),

that is, Ω (1) operations are performed for each sent or received message. We de-

note with TA(n, p,B) the computation complexity of a network-oblivious algorithm

A with input size n on M(p,B).

As a cache-oblivious algorithm �ignores�, hence cannot explicitly use, cache size

and line length, so does a network-oblivious algorithm ignore, hence cannot explicitly

4.1. The framework 51

use, the actual number of processors that will carry out the computation, and the

block size of the communication.

De�nition 4.1. A network-oblivious algorithm A for a problem Π is optimal if for

every p and B, with 1 < p ≤ n and B ≥ 1, the execution of A on an M(p,B) machine

yields an algorithm with asymptotically minimum communication complexity among

all M(p,B) algorithms for Π.

Execution machine model. To substantiate the usefulness of the above de�ni-

tion, we now show that, under certain assumptions, an optimal network-oblivious

algorithm can run optimally on an wide class of parallel machines, whose underlying

interconnection network exhibits a hierarchical structure with respect to its band-

width characteristics. To model machines in this class, we use the block variant

of the Decomposable BSP (D-BSP) model described in Section 2.2.1, denoted as a

D-BSP(P, g,B), where g = (g0, g1, . . . glogP−1) and B = (B0, B1, . . . BlogP−1). Note

that a D-BSP(P, g,B) is essentially an M(P) machine, where the communication

time of superstep s is de�ned to be hs(P,Bi)gi, where i is the label of the superstep

and hs(P,Bi) denotes the block-degree of the superstep.

In the reminder of this section, we show that an optimal network-oblivious algo-

rithm A translates into an optimal D-BSP algorithm under some reasonable assump-

tions on the communication pattern employed by the algorithm and on the machine

parameters. We begin with the following technical lemma.

Lemma 4.2. For m ≥ 1, let 〈X0, X1, . . . , Xm−1〉 and 〈Y0, Y1, . . . , Ym−1〉 be two arbi-

trary sequences of nonnegative integers, and let 〈f0, f1, . . . , fm−1〉 be a nonincreasing

sequence of nonnegative real values. If
∑i

j=0 Xj ≤
∑i

j=0 Yj, for every 0 ≤ i < m,

then
m−1∑
j=0

Xjfj ≤
m−1∑
j=0

Yjfj.

Proof. By de�ning S−1 = 0 and Sj =
∑j

i=0(Yi − Xi) ≥ 0, for 0 ≤ j ≤ m − 1, we

have:

m−1∑
j=0

fj(Yj −Xj) =
m−1∑
j=0

fj(Sj − Sj−1) =
m−1∑
j=0

fjSj −
m−1∑
j=1

fjSj−1 ≥

≥
m−1∑
j=0

fjSj −
m−1∑
j=1

fj−1Sj−1 = fm−1Sm−1 ≥ 0.

�

52 Chapter 4. Network-Oblivious Algorithms

In the next de�nitions, we introduce some useful parameters and properties of

network-oblivious algorithms.

De�nition 4.3. Given an algorithm A for M(n), we de�ne i-granularity bi, for

0 < i ≤ log n, the minimum number of words ever exchanged by two communicating

PEs in any superstep of the execution of A on an M(2i, 1).

In other words, when executing A on M(2i, 1), in any superstep, if pj sends any

words to pk, then it sends at least bi words to it.

De�nition 4.4. Let α > 0 be constant. An algorithm A for M(n) is said to be

(α, P)-wise if, for any i with 1 < 2i ≤ P , we have

HA(n, 2i, 1) ≥ α
n

2i

∑
s∈Li

hs(n, n, 1).

where Li is the set of indices of the supersteps with labels j < i.

To put the above de�nition into perspective, we observe that an algorithm where

for each j-superstep and for every i > j there is always at least one segment of n/2i

consecutively numbered PEs each communicating the maximum amount of words

for that superstep to PEs outside the segment, is surely an (α, P)-wise algorithm.

However, (α, P)-wiseness holds even if the aforementioned communication scenario

is realized only in an average sense.

Many algorithms are likely to exhibit a good level of granularity and can be ar-

ranged to be (α, P)-wise. Indeed, this is the case for all network-oblivious algorithms

presented in this chapter. Quite interestingly, these algorithms achieve optimal per-

formance on D-BSP, as better established in the following theorem.

Theorem 4.5. Let A be an (α, P ∗)-wise optimal network-oblivious algorithm for a

problem Π with input size n, speci�ed for the M(n) model, with i-granularity bi, for

0 ≤ i < logP ∗. Then, A exhibits asymptotically optimal communication time when

executed on any D-BSP(P, g,B), with P ≤ P ∗ and Bi ≤ blogP , for 0 ≤ i < logP .

Proof. Let DA(i), with 0 ≤ i < logP , be the sum of block-degrees of all i-supersteps

when A is executed on D-BSP(P, g,B). From the hypothesis on the granularity of A,
we have that the minimum amount of words ever exchanged by two communicating

PEs in any superstep is at least blogP ≥ Bi, for every 0 ≤ i < logP . Hence,

DA(i) ≤ 2
n

P

∑
s∈Li+1\Li

hs(n, n, 1)

Bi

, ∀0 ≤ i < logP.

4.1. The framework 53

Since A is (α, P ∗)-wise, we have that

HA(n, 2i, Bi) ≥
HA(n, 2i, 1)

Bi

≥ α
∑
s∈Li

n

2i
hs(n, n, 1)

Bi

≥ α
i−1∑
j=0

n

2iBi

∑
s∈Lj+1\Lj

hs(n, n, 1) ≥ α

2

i−1∑
j=0

P

2i
DA(j)

Bj

Bi

.

By de�nition, the overall communication time of A on D-BSP(P, g,B) is H =∑logP−1
j=0 DA(j)gj. Suppose A′ were an asymptotically faster D-BSP(P, g,B) algo-

rithm for Π. Then, for every constant ε > 0 and su�ciently large input size n, A′

would exhibit communication time H ′ < εH, so that, with obvious notation,

logP−1∑
j=0

DA′(j)gj < ε

logP−1∑
j=0

DA(j)gj.

The above relation can be rewritten as

logP−1∑
j=0

DA′(j)Bj
gj
Bj

< ε

logP−1∑
j=0

DA(j)Bj
gj
Bj

.

Recalling from Section 2.2.1 that the ratios gi/Bi are assumed to be non-increasing,

we can apply Lemma 4.2, with m = logP , fj = gj/Bj, Xj = εDA(j)Bj, and

Yj = DA′(j)Bj, to show that there exists an i ≤ logP such that

i−1∑
j=0

DA′(j)Bj < ε
i−1∑
j=0

DA(j)Bj.

Now, we can naturally interpret A′ as an M(2i, Bi) algorithm, whose communication

complexity satis�es

HA′(n, 2
i, Bi) ≤

i−1∑
j=0

P

2i
DA′(j)

Bj

Bi

< ε
i−1∑
j=0

P

2i
DA(j)

Bj

Bi

≤ 2ε

α
HA(n, 2i, Bi),

which is a contradiction, since 2ε/α is an arbitrary value and, by de�nition, A is

asymptotically optimal for M(2i, Bi). (Note that in the above inequalities we used

the fact that the Bj's are powers of two and non-increasing.) �

As a �nal remark, observe that by setting all block sizes equal to 1, the above

framework can be specialized to the case where the block transfer feature is not

54 Chapter 4. Network-Oblivious Algorithms

accounted for.

4.2 Algorithms for key problems

In this section we present optimal network-oblivious algorithms for a number of rel-

evant computational problems, namely matrix multiplication, matrix transposition,

FFT and sorting. In some cases, optimality requires additional constraints on the

relative values of some machine and input parameters and, in one case, we will prove

that these constraints are necessary to obtain network-oblivious optimality. The cor-

rectness of the algorithms will not be discussed since they are straightforward (e.g.,

matrix transposition) or already proved in the literature (e.g., matrix multiplication,

FFT, sorting).

This section is organized as follows. In Sections 4.2.1 and 4.2.2 we describe

the network-oblivious algorithms for matrix multiplication and transposition, re-

spectively. In Section 4.2.3 we show that there cannot exist a network-oblivious

algorithm for matrix transposition which is optimal for all values of the parameters.

Then, in Sections 4.2.4 and 4.2.5, we provide network-oblivious algorithms for FFT

and sorting, respectively.

4.2.1 Matrix multiplication

The n-MM problem requires to multiply two n× n matrices using only semiring op-

erations [Ker70]. In this section we propose two network-oblivious algorithms which

both yield optimal communication complexities, while they exhibit di�erent memory

requirements. We �rst establish lower bounds on the communication complexity of

any M(p,B) algorithm for this problem.

Theorem 4.6. Let A be any algorithm solving the n-MM problem on an M(p,B),

with 1 < p ≤ n2 and B ≥ 1. If initially the inputs are evenly distributed among the

p processors, then the communication complexity of the algorithm is

Ω

(
n2

Bp2/3

)
. (4.1)

Moreover, if each processor cannot contain more than O (n2/p) entries of the input

and output matrices in each superstep, then the communication complexity is:

Ω

(
n2

B
√
p

)
. (4.2)

4.2. Algorithms for key problems 55

Proof. The lower bound in Equation 4.2 is a consequence of [ITT04, Theorem 4.1]:

this theorem requires the local memory of each processor to be upper bounded by

O (n2/p), thus making no distinction between the local memory used for storing input

and output entries (and their possible copies) and the local memory used for others

data structures (e.g., the space required for simulating network-oblivious algorithms

on an M(p,B)). Nevertheless, the proof remains valid when imposing the O (n2/p)

limit only to the number of input and output entries in a processor.

Irony et al. [ITT04, Lemma 5.1] provided the lower bound in Equation 4.1 as-

suming a O
(
n2/p2/3

)
upper bound on the local memory of each processor. However,

the same lower bound was proved, without the assumption, in [Pie95, CFSV95] for

M(p, 1). �

Next, we describe an optimal network-oblivious algorithm, which we name N-MM

(Network-oblivious Matrix Multiplication), for the n-MM problem whose communica-

tion complexity matches the lower bound in Equation 4.1. The algorithm is speci�ed

on M(n2). Let A, B and C denote the two input matrices and the output matrix,

respectively, and suppose that their entries are evenly distributed among the PEs.

For 0 ≤ i, j < n, we denote with P (i, j) the processing element PEin+j of M(n2),

and require that such a PE holds A[i, j], B[i, j], and C[i, j]. We denote a quadrant

of matrix E (E ∈ {A,B,C}) with Ehk, with h, k ∈ {0, 1}.2 Let ` ∈ {0, 1}, de�ne
Mhk` = Ah` ·B`k, whence Chk = Mhk0+Mhk1. The algorithm is based on the following

simple recursive strategy, where we denote withm and q the number of rows/columns

of the (sub)matrices involved and the number of assigned PEs, respectively (initially,

m = n and q = n2).

1. Regard the q PEs as partitioned into eight segments Shk`, with h, k, ` ∈ {0, 1},
of q/8 PEs each. Replicate and distribute the inputs so that the entries of Ah`

and B`k are evenly spread among the PEs in Shk`. (Note that each Shk` is an

M(q/8) machine.)

2. For h, k, ` ∈ {0, 1} in parallel, compute recursively the product Mhk` within

Shk`.

3. For h, k ∈ {0, 1} in parallel, Mhk0 and Mhk1 are evenly distributed among PEs

in Shk0 and Shk1 is such a way that Mhk0[i, j] and Mhk1[i, j] are contained by

the same PE for each 0 ≤ i, j < m/2.

2Quadrants are the following: E00 (top-left), E01 (top-right), E10 (bottom-left), E11 (bottom-
right).

56 Chapter 4. Network-Oblivious Algorithms

4. For 0 ≤ i, j < m in parallel, C[i, j] is computed by adding Mhk0[i, j] and

Mhk1[i, j].

The recurrence stops when only one PE is assigned to a subproblem (i.e., q = 1).

The parameter m decreases by a factor two, while the number q of PEs assigned to

each subproblem by a factor eight. Since, at the beginning of the algorithm, m = n

and q = n2, each PE, in the base case, must multiply sequentially two matrices of

size n1/3 × n1/3.

Theorem 4.7. The communication and computation complexities of the network-

oblivious algorithm N-MM for the n-MM problem, when executed on an M(p,B)

machine, with 1 < p ≤ n2 and 1 ≤ B ≤ n2/p, are

HN−MM(n, p,B) ∈ Θ

(
n2

Bp2/3

)
, (4.3)

TN−MM(n, p,B) ∈ Θ

(
n3

p

)
, (4.4)

which are optimal for all values of p and B in the speci�ed ranges. The algorithm

requires a O
(
n2/3

)
memory blow-up per processor.

Proof. Consider the execution of a recursive call with input size m and q assigned

PEs, and let r be the number of M(p,B) processors that simulate the q PEs (r ≤ q).

Let H(m, r) be the communication complexity of a recursive call to N-MM. Since

there is no communication when the q PEs are simulated by the same processor, it

follows that (for simplicity B and q are omitted from H(m, r)):

H(m, r) ≤

 H
(m

2
,
r

8

)
+O

(
m2

Br

)
if r > 1

0 if r ≤ 1

which yields

H(m, r) ∈ O
(

m2

Br2/3

)
.

Equation 4.3 follows by setting m = n, q = n2 and r = p; its optimality descends

from Theorem 4.6. Let T (m, q, r) denote the computation complexity of a recursive

call to N-MM, where m, q and r are de�ned as in H(m, r); clearly, TN−MM(n, p,B) =

4.2. Algorithms for key problems 57

T (n, n2, p). T (m, q, r) is upper bounded by the following recurrence:

T (m, q, r) ≤

T
(m

2
,
q

8
,
r

8

)
+O

(
m2

r

)
if r > 1

8T
(m

2
,
q

8
, 1
)

+O
(
m2
)

if r ≤ 1 and q > 1

O
(
m3
)

if r ≤ 1 and q ≤ 1

which yields

T (m, q, r) ∈ O
(
m3

r

)
.

Note that the inequality q > 1 in the recurrence is equivalent to m > n1/3. Each PE

in M(n2) requires S(n, n2) space, where S(m, q) denotes the space required by a PE

for executing a recursive call of N-MM with parameters m and q. S(m, q) is upper

bounded by the following equation:

S(m, q) ≤

 S
(m

2
,
q

8

)
+O

(
m2

q

)
if q > 1

O
(
m2
)

if q ≤ 1

from which it follows that

S(m, q) ∈ O
(
m2

q2/3

)
.

Each M(p,B) processor requires O (S(n, n2)n2/p) space, hence the algorithm incurs

a O
(
n2/3

)
memory blow-up. �

N-MM solves the eight recursive subproblems Mhk` in parallel: the parallelism

decreases the communication complexity of the algorithm, but it causes a non-

constant memory blow-up. By solving the subproblems in two rounds, during which

only four subproblems are solved in parallel, it is possible to de�ne a network-

oblivious algorithm with a constant memory blow-up, but communication complexity

Θ
(
n2/B

√
p
)
. The algorithm, which we denote with SN-MM (Succinct Network-

oblivious Matrix Multiplication), is optimal for Theorem 4.6 because each processor

holds at most Θ (n2/p) entries of the input and output matrices.

SN-MM is de�ned in M(n2) and computes C+A ·B, where A, B and C are three

n × n matrices. Suppose the three matrices to be distributes among the PEs as in

N-MM. As before, we refer to a quadrant of a matrix E (E ∈ {A,B,C}) as Ehk,
with h, k ∈ {0, 1}. The algorithm is based on the following simple recursive strategy,

58 Chapter 4. Network-Oblivious Algorithms

where parameters m and q are employed with the same meaning as before (initially,

m = n and q = n2):

1. Regard the q PEs as partitioned into four segments Shk, with h, k ∈ {0, 1}, of
q/4 PEs each. (Note that each Shk is an M(q/4) machine.)

2. Redistribute the inputs so that the entries of Ah0 and B0h are evenly spread

among the PEs in Shh, and the entries of Ah1 and B1k evenly spread among

the PEs in Shk, for h, k ∈ {0, 1} and h 6= k.

3. For h, k ∈ {0, 1} and h 6= k in parallel, compute recursively Chh + Ah0 · B0h

within Shh. and Chk + Ah1 ·B1k within Shk.

4. Redistribute the inputs so that the entries of Ah1 and B1h are evenly spread

among the PEs in Shh, and the entries of Ah0 and B0k evenly spread among

the PEs in Shk, for h, k ∈ {0, 1} and h 6= k.

5. For h, k ∈ {0, 1} and h 6= k in parallel, compute recursively Chh + Ah1 · B1h

within Shh. and Chk + Ah0 ·B0k within Shk.

6. Redistribute the inputs so that the entries of Ahk and Bhk are evenly spread

among the PEs in Shk, for h, k ∈ {0, 1}.

Since the subproblem size m2 and the number of assigned PEs decrease by a factor

four, it follows that in each recursive call with input size m there are m2 PEs. The

recurrence stops when a subproblem is solved by an unique PE, that is, when the

subproblem size is one: in this case, C + A · B is computed locally. SN-MM is

equivalent to the D-BSP algorithm given in Theorem 2.5 when P = n2, where P

denotes the number of D-BSP processors.

Theorem 4.8. The communication and computation complexities of the network-

oblivious algorithm SN-MM for the n-MM problem, when executed on an M(p,B)

machine, with 1 < p ≤ n2 and 1 ≤ B ≤ n2/p, are

HSN−MM(n, p,B) ∈ Θ

(
n2

B
√
p

)
, (4.5)

TSN−MM(n, p,B) ∈ Θ

(
n3

p

)
, (4.6)

which are optimal for all values of p and B in the speci�ed ranges. The algorithm

incurs a O (log n) memory blow-up per processor.

4.2. Algorithms for key problems 59

Proof. Observe that any recursive call with input size m is solved by q = m2 PEs.

Let H(m, r) denote the communication complexity of a recursive call to SN-MM,

where m and r denote the input size and the number of assigned M(p,B) processors,

respectively. It follows that:

H(m, r) ≤

 2H
(m

2
,
r

4

)
+O

(
m2

Br

)
if r > 1

0 if r ≤ 1

which yields

H(m, r) ∈ O
(
m2

B
√
r

)
.

Equation 4.5 follows because HSN−MM(n, p,B) = H(n, p). Let T (m, r) denote the

computation complexity of a recursive call to SN-MM, where m and r are de�ned as

usual.

T (m, r) ≤

2T
(m

2
,
r

4

)
+O

(
m2

r

)
if r > 1

8T
(m

2
, 1
)

+O
(
m2
)

if r ≤ 1 and m > 1

O (1) if r ≤ 1 and m ≤ 1

which yields

T (m, r) ∈ O
(
m3

q

)
.

Since the input and output matrices are evenly distributed among the PEs and their

entries are not replicated, the optimality of the communication complexity follows

from Equation 4.2 of Theorem 4.6. The memory blow-up is due to the machine stack

size of each PE, which has size O (log n) because each PE performs log n recursive

and nested calls to SN-MM. The execution of SN-MM on an M(p,B) exhibits the

same memory blow-up. �

The next lemma states that SN-MM can be transformed into an iterative network-

oblivious algorithm without increasing its communication and computation complex-

ities.

Lemma 4.9. The network-oblivious algorithm SN-MM can be transformed into an

iterative network-oblivious algorithm. Its communication and computation complex-

ities on an M(p,B), with 1 < p ≤ n2 and 1 ≤ B ≤ n2/p, do not change, while no

60 Chapter 4. Network-Oblivious Algorithms

additional space for stack is required.

Proof. We show that the stack of a PE can be simulated by a constant number of

words. In a recursive call of SN-MM, each PE must know the size of the subproblem

and on which submatrices of A, B and C is working. However, the size can be

represented in a global variable m which is divided by two before a recursive call and

multiplied by two when a call �nishes. Furthermore, the submatrices of A, B and C

on which a PE is working is uniquely determined by the size of the subproblem and

the PE's ID.

Thus, the stack is required only for storing the return address of a recursive call.

However, in SN-MM there are only two possible return addresses (Lines 3 and 5),

thus only one bit is su�cient for storing them. Since there are at most log n nested

calls, it follows that the machine stack can be simulated by log n bits. Since on an

M(n2) there are n2 PEs, we can suppose the log n bits to be stored in a constant

number of words. �

The additional memory due to the stack is also required by the network-oblivious

algorithms for FFT and sorting, but we will not discus this issue further since the

approach used for SN-MM applies to these algorithms as well.

We now apply Theorem 4.5 to show that N-MM and SN-MM are both optimal

in a D-BSP. (Remember that the D-BSP model assumes that both the Bi's and the

ratios gi/Bi are non increasing.)

Corollary 4.10. SN-MM and N-MM perform optimally on a D-BSP(P, g,B) where

1 < P ≤ n2 and 1 ≤ Bi ≤ n2/P for each 0 ≤ i < logP . In particular, the

communication time of SN-MM is:

DSN−MM(n, P, g,B) ∈ Θ

(
n2

P

logP−1∑
i=0

2i/2
gi
Bi

)
. (4.7)

Proof. Consider an i-superstep s of SN-MM or N-MM and let hs be the maximum

number of words sent or received by a PE. It is easy to see that there exists a set

of q = n2/2i consecutive numbered PEs where almost all PEs in the �rst half of q/2

PEs send Θ (hs) messages to PEs in the second half. Hence, the word-degree of s

on an M(2j, 1), with j > i, is Θ (hsn2/2j) and algorithms SN-MM and N-MM are

(α, n2)-wise, for a suitable constant α. Since the i-granularity of SN-MM is Θ (n2/2i),

the corollary follows from Theorem 4.5. Equation 4.7 can be derived as Equation 2.3

in Theorem 2.5. �

4.2. Algorithms for key problems 61

In conclusion, N-MM attains a better communication time than SN-MM, however

the former requires a O
(
n2/3

)
memory blow-up. If a constant memory blow-up is

desired, the (iterative) SN-MM algorithm must be used; however, communication

time will increase [ITT04]. For the optimality of SN-MM in the D-BSP, it follows

that Equation 4.7 provides also a lower bound on the communication time for the

n-MM problem on a D-BSP(P,g,B) where Bi ≤ n2/P for each i, with 0 ≤ i < logP .

4.2.2 Matrix transposition

The n-MT problem consists of transposing an n × n matrix. To completely specify

the problem in the parallel setting, we require that, initially (resp., �nally), the

entries of the matrix are evenly distributed among the available PEs according to a

row-major (resp., column-major) ordering. While the problem is trivially solved on

any M(p, 1) machine, as we will see, it becomes harder for larger block sizes. The

following theorem establishes a lower bound on the communication complexity of the

n-MT problem.

Theorem 4.11. Let A be an algorithm solving the n-MT problem on an M(p,B),

with 1 < p ≤ n2 and 1 ≤ B ≤ n2/p. The communication complexity of the algorithm

is

Ω

(
n2

Bp

(
1 +

log(min{(n2/p), p})
log(1 + n2/(Bp))

))
.

Proof. We use an argument similar to the one employed in [AV88] (see also Sec-

tion 3.2) to bound from below the I/O complexity of transposition in the EM model.

For 0 ≤ i < p, we de�ne the i-th target group as the set of entries that will be in

processor pi at the end of the algorithm. Let H be the communication complexity

of the algorithm and H ′ ≤ Hp be the overall number of blocks exchanged by the

processors during the entire execution. Let us index the blocks communicated among

the processors from 1 to H ′, so that the indices assigned to blocks communicated

in one superstep are smaller than those assigned to blocks communicated in any

subsequent superstep. For 0 ≤ t ≤ H ′, de�ne xi,j(t) as the number of entries of the

i-th target group held by pj after block t has been communicated (xi,j(0) re�ects the

initial condition). We de�ne the potential of A after the block of index t has been

communicated as

POT(t) =

p−1∑
i=0

p−1∑
j=0

f(xi,j(t)),

where f(x) = x log x, for x > 0, and f(0) = 0. We now bound POT(0): if p ≥ n, each

processor contains one entry for each of n2/p target groups, hence POT (0) = 0; if

p < n, each processor contains n/p rows of the input matrix, hence it contains n2/p2

62 Chapter 4. Network-Oblivious Algorithms

entries of p target groups and POT (0) ≤ n2 log(n2/p2). It follows that POT(0) ≤
n2 log(d(n/p)2e) for each 1 ≤ p ≤ n2; clearly, POT(H ′) = n2 log(n2/p). By reasoning

as in [AV88], it can be shown that, for a suitable constant c > 0, the block of index

t increases the potential by the quantity3

POT(t)− POT(t− 1) ≤ cB log

(
1 +

n2

Bp

)
def

= ∇POT. (4.8)

Therefore,

p ·H · ∇POT ≥ POT(H ′)− POT(0) = n2 log

(
n2

p

)
− n2 log

(⌈(
n

p

)2
⌉)

,

and the theorem follows. �

We now describe a network-oblivious algorithm, named N-MT, for the n-MT

problem on M(n2). For a nonnegative integer i, let B(i) denote the binary repre-

sentation of i, and let B−1(·) be such that B−1(B(i)) = i. Given two binary strings

u = (ud−1 . . . u0) and v = (vd−1 . . . v0) we let u ./ v denote their bitwise interleaving,

that is, u ./ v = ud−1vd−1 . . . u0v0. Let A be the n × n input matrix and let P (i, j)

denote the processing element PEin+j, which initially holds A[i, j] and at the end

will hold AT [i, j], with 0 ≤ i, j < n. The algorithm consists of a 1-superstep followed

by a 0-superstep.

1. For 0 ≤ i, j < n, P (i, j) sends A[i, j] to the PEq, where q = B−1(B(i) ./ B(j));

2. For 0 ≤ q < n2, if the PEq has received entry A[i, j] in the previous substep,

then it forwards it to P (j, i).

We observe that the �rst superstep rearranges matrix entries according the Z-Morton

permutation de�ned in [CLPT02]. The correctness of the algorithm is evident. The

communication complexity of the above algorithm, whose correctness is immediate,

is established in the following theorem.

Theorem 4.12. The communication and computation complexities of the network-

oblivious algorithm N-MT when executed on an M(p,B) machine, with 1 < p ≤ n2

3Equation 4.8 can, loosely speaking, be derived from Lemma 3.1 by setting M = n2/p and
W = B.

4.2. Algorithms for key problems 63

and 1 ≤ B ≤ n/
√
p, are

HN−MT(n, p,B) ∈ Θ

(
n2

Bp

)
(4.9)

TN−MT(n, p,B) ∈ Θ

(
n2

p

)
(4.10)

respectively, which are optimal for the speci�ed ranges of p and B.

Proof. Suppose B, p and n are powers of two and 1 ≤ B ≤ n/
√
p. Let Bk, with

0 ≤ k < n2/B, denotes the k-th segment of B consecutive PEs of M(n2), that

is, PEkB . . . PE(k+1)B−1. Note that PEs within the same Bk hold A's entries that

are in the same row and belong to B di�erent columns whose addresses di�er in

the logB least signi�cant bits, assuming B ≤ n/
√
p. Hence, in the �rst superstep

PEs in every Bk send their entries to PEs belonging to a segment of size at most

B2/2 ≤ n2/p. In the second superstep, P (j, i) receives an entry from PEq, where

q = B−1(B(i) ./ B(j)); thus PEs in every Bk receives all their data from PEs be-

longing to a segment of size B2. Therefore, since a segment of B2 ≤ 2n2/p PEs is

contained in at most four M(p,B) processors, the block-degree of the communication

involved in each superstep is O (n2/(Bp)). Optimality follows from Theorem 4.11.

If B, n or p are not powers of two, then the algorithm and the proof work by con-

sidering the nearest powers of two (which are a multiplicative factor two apart). �

The following corollary is a consequence of Theorems 4.5 and 4.12:

Corollary 4.13. The network-oblivious algorithm N-MT performs optimally on a

D-BSP(P, g,B) where 1 < P ≤ n2 and 1 ≤ Bi ≤ n/
√
p, for each 0 ≤ i < logP .

Proof. It is easy to see that in each i-superstep, with i ∈ {0, 1} and for each

i < j < log n2, there exists a segment of Θ (n2/2j) consecutive numbered PEs

each communicating the maximum amount of words (that is, O (n2/2j)) for that

superstep to PEs outside the segment; then the algorithm is (α, n2)-wise. From the

proof of Theorem 4.12, it follows that two communicating processors of M(2i, B),

with 0 < i ≤ log n2 and B ≤ n/2i/2, exchange at least Ω (B) words; hence, the

i-granularity is Θ
(
n/2i/2

)
. The corollary follows from Theorem 4.5. �

4.2.3 Impossibility result for matrix transposition

The constraint on B in the above theorem is what we call small-block assumption and

is reminiscent of the tall-cache assumption made in the context of cache-oblivious

64 Chapter 4. Network-Oblivious Algorithms

algorithms [FLPR99]. We will now prove that, under reasonable constraints, the

small-block assumption is necessary to achieve network-oblivious optimality for the

n-MT problem, just as the tall-cache assumption was shown to be necessary to

achieve cache-oblivious optimality for n-MT (see Section 3). We say that an M(p,B)

algorithm is full if in each of its supersteps all processors send/receive the same

number of blocks, within constants, and each block contains Θ (B) data words.

Theorem 4.14. There cannot exist a network-oblivious algorithm A for the n-MT

problem such that, for every 1 < p ≤ n2 and 1 ≤ B ≤ n2/p, its execution on M(p,B)

yields a full algorithm whose communication complexity matches the one stated in

Theorem 4.11.

Proof. Assume that such a network-oblivious algorithm A exists, and let H1 and H2

be the communication complexities of A when executed on M(p1, B1) and M(p2, B2),

with p1 > p2. Since the two executions are full by hypothesis, and every data commu-

nicated in the M(p2, B2) execution must be also communicated in the M(p1, B1) exe-

cution, we must have that B1p1H1 ∈ Ω (B2p2H2), whence B1p1H1/(B2p2H2) ∈ Ω (1)

(the asymptotic is with reference to n). Now, let us choose p1 = n2/2, B1 = 1,

p2 = Θ (n2−ε), for an arbitrary constant 0 < ε < 1, and B2 ∈ Θ (n2/p2). Then, by

Theorem 4.11 we have that (B1p1H1)/(B2p2H2) ∈ Θ (1/ log n) = o (1), a contradic-

tion. �

Next, we prove that the n-MT lower bound can always be matched by parameter-

aware full algorithms, hence the impossibility stated above stems from requiring

network-obliviousness.

Theorem 4.15. For every 1 < p ≤ n2 and 1 ≤ B ≤ n2/p, there exists a full M(p,B)

algorithm for the n-MT problem whose communication complexity matches the one

stated in Theorem 4.11.

Proof. The algorithm is obtained by suitably parallelizing the strategy of [AV88]

employed for solving the n-MT problem in the EM model. In each processor, the

Θ (n2/p) records are partitioned into di�erent target groups; each group in the de-

composition is called a target subgroup. Before the start of the algorithm, the size of

each target subgroup is d(n/p)2e.
The algorithm uses a merging procedure. The records in the same target subgroup

remain together throughout the course of the algorithm. In each superstep, target

subgroups are merged and become bigger. The algorithm terminates when each

target subgroup is complete, that is, when each target subgroup has size Θ (n2/p). In

each superstep, which has block-degree Θ (n2/(Bp)), the size of each target subgroup

4.2. Algorithms for key problems 65

increases by the multiplicative factor n2/(Bp). Hence, the number i of supersteps

required by the algorithm is given by:⌈
n

p

⌉2(
n2

Bp

)i
≥ n2

p
.

Since the block-degree of each round is Θ (n2/(Bp)) the theorem follows.

As an example, consider the case when B = Θ (n2/p). The algorithm divides the

input matrix into n2/k2 submatrices of size k × k, with k = min{n, n2/p}. Since

the matrix is distributed according with a row-major layout, each processor contains

dn/pe rows of a submatrix. Then, in parallel, processors assigned to a submatrix

transpose it by means of a binary merge; after that, each processor completely con-

tains one target group and, in the �nal superstep, the target groups are moved in

the right �nal destinations. It is easy to see that the algorithm requires

Θ

(
log

k

dn/pe

)
= Θ

(
log min{n2/p, p}

)
supersteps, whose block-degree is O (1). �

4.2.4 FFT

The n-FFT problem consists of computing an n-input FFT dag. The following

theorem establishes a lower bound on the communication complexity of any M(p,B)

algorithm for this problem.

Theorem 4.16. Let A be any algorithm solving the n-FFT problem on an M(p,B)

with 1 < p ≤ n and B ≥ 1. If the word-degree of each superstep is Θ (n/p), then the

communication complexity of A is:

Ω

(
n

Bp

log n

log(1 + n/p)

)
.

Proof. Observe that the or of n bits can be computed by means of the FFT dag.

Hence, the lower bound given in [Goo99, Theorem 4.2] on the number of supersteps

for computing the or of n bits on an M(p, 1) translates into a lower bound for the

n-FFT problem. Since the word-degree of each superstep is Θ (n/p), the theorem

follows. �

The network-oblivious n-FFT algorithm, called N-FFT, on M(n) exploits the

66 Chapter 4. Network-Oblivious Algorithms

well-known recursive decomposition of the dag into two sets of
√
n-input FFT sub-

dags, with each set containing
√
n such dags [ACS87]. Inputs are initially distributed

one per PE in such a way that the inputs of the j-th subdag in the �rst set are assigned

to the j-th segment of
√
n consecutively numbered PEs (i.e., an M(

√
n) machine).

The outputs of the �rst set of subdags are permuted to become the inputs of the

second set, where the permutation pattern is equivalent to the matrix transposition

of an
√
n×
√
n matrix (i.e.,

√
n-MT); thus, the permutation can be performed with

the network-oblivious algorithm N-MT. We have:

Theorem 4.17. The communication and computation complexities of the network-

oblivious algorithm N-FFT, when executed on an M(p,B) machine, with 1 < p ≤ n

and 1 ≤ B ≤
√
n/p, are

HN−FFT(n, p,B) ∈ Θ

(
n

Bp

log n

log(1 + n/p)

)
(4.11)

TN−FFT(n, p,B) ∈ Θ

(
n

p
log n

)
(4.12)

which are optimal for the speci�ed ranges of p and B.

Proof. When the algorithm is run on an M(p,B) machine with p ≤
√
n, each subdag

is computed locally by a single processor, and in this case, we must account only for

the transposition step, which entails each processor sending and receiving O (n/(Bp))

blocks for Theorem 4.12.

Each recursive call of the algorithm with input size m is solved by m PEs, and

let r be the number of M(p,B) processors that simulate these PEs. Since in each

recursive level, the m PEs perform a matrix transposition, each processor has block-

degree O (m/(Br)) and the communication complexity of the recursive call, H(m, r)

obeys the subsequent recurrence (for simplicity B is omitted from H(m, r)):

H(m, r) ≤

 2H

(√
m,

r√
m

)
+O

(m
Br

)
if r > 1

0 if r ≤ 1

which yields

H(m, r) ∈ O
(
m

Br

logm

log(1 +m/r)

)
.

Equation 4.11 is obtained by settingm = n and r = p, and its optimality follows from

Theorem 4.16 since the word-degree of an M(p,B) processor is Θ (n/p). The com-

putation complexity, T (m, r), of the recursive call is instead given by the following

4.2. Algorithms for key problems 67

recurrence:

T (m, r) ≤

2T

(√
m,

r√
n

)
+O

(m
r

)
if r > 1

2
√
mT

(√
m, 1

)
+O (m) if r ≤ 1 and m > 1

O (1) if r ≤ 1 and m ≤ 1

and we have

T (m, r) ∈ O
(m
r

logm
)

Equation 4.12 is obtained by setting m = n and r = p, and is optimal because an

n-input FFT dag contains Θ (n log n) nodes. �

Observe that the small-block assumption is needed to guarantee an O (n/(Bp))

communication complexity for the matrix transposition problem within the algo-

rithm. It is an interesting open problem to determine to what extent such an

assumption is really needed in the n-FFT case. A similar question regarding the

tall-cache assumption is open in the realm of cache-obliviousness.

The following theorem is a consequence of Theorems 4.5 and 4.17:

Corollary 4.18. The network-oblivious algorithm N-FFT performs optimally on a

D-BSP(P, g,B) where 1 < P ≤ n and 1 ≤ Bi ≤
√
n/p for each 0 ≤ i < logP .

Proof. Note that N-FFT's communications are due to matrix transposition. By

Corollary 4.13, it follows that N-FFT is (α, n)-wise4 and its i-granularity is Θ
(
n/2i/2

)
.

The corollary follows from Theorem 4.5. �

4.2.5 Sorting

The n-Sort problem consists of sorting n keys. We require that the inputs are evenly

distributed among the PEs, and that, at the end, the keys held by the i-th PE are

all smaller than or equal to those held by the j-th PE, for every j > i. The following

theorem establishes a lower bound on the communication complexity of any M(p,B)

algorithm for this problem.

Theorem 4.19. Let A be an algorithm solving the n-Sort problem on an M(p,B),

with 1 < p ≤ n and B ≥ 1. If the word-degree of each superstep is Θ (n/p), then the

4The algorithm given by the concatenation of supersteps of (α, P)-wise algorithms is still (α, P)-
wise.

68 Chapter 4. Network-Oblivious Algorithms

communication complexity of A is:

Ω

(
n

Bp

log n

log(1 + n/p)

)

Proof. The theorem follows by dividing by B the lower bound for M(p, 1) given in

[Goo99] �

We now describe a network-oblivious algorithm, called N-Sort, for n-Sort based

on a recursive version of the Columnsort algorithm as described in [Lei92]. We

regard both the n keys and the PEs of M(n) as arranged on a s × r matrix with

s = n1/3 and r = n2/3. The algorithm consists of seven phases numbered from 1 to

7. During Phases 1, 3, 5 and 7 the keys in each row are sorted recursively (except

in Phase 5 where adjacent rows are sorted in reverse order) by r consecutive PEs

(i.e., an M(n2/3) machine). During Phase 2 (resp., 4) a transposition (resp., reverse

transposition) of the s×r matrix is performed maintaining the s×r shape. In Phase

6 two steps of odd-even transposition sort are applied to each column.

Theorem 4.20. The communication and computation complexities of the network-

oblivious algorithm N-Sort, when executed on an M(p,B) machine with 1 < p ≤ n

and 1 ≤ B ≤
√
n/p are

HN−Sort(n, p,B) ∈ O

(
n

Bp

(
log n

log(1 + n/p)

)log3/2 4
)
,

TN−Sort(n, p,B) ∈ O
(
n

Bp
(log n)log3/2 4

)
.

The communication complexity is optimal when p ≤ n1−ε, for any constant ε with

0 < ε < 1.

Proof. The transposition performed in Phases 2 and 4 can be implemented by sep-

arately transposing in parallel the r/s submatrices of size s × s and then suitably

permuting the rows of the s × r matrix. By employing the network-oblivious al-

gorithm described in Subsection 4.2.2 for each submatrix and by using the stated

upper bound on B, the transposition of the s × r matrix has communication com-

plexity Θ (n/(Bp)). The stated communication and computation complexities of the

entire algorithm is obtained by solving the following recurrences, where H(m, τ) and

T (m, τ) are the communication and computation complexities of a recursive call with

4.2. Algorithms for key problems 69

input size m and solved by τ processors of M(p,B).

H(m, τ) ≤

 4H
(
m2/3,

τ

m1/3

)
+O

(m
Bτ

)
if τ > 1

0 if v ≤ 1

∈ O

(
m

Bτ

(
logm

log(1 +m/τ)

)log3/2 4
)

T (m, τ) ≤

4T
(
m2/3,

τ

m1/3

)
+O

(m
τ

)
if τ > 1

4m1/3T
(
m2/3, 1

)
+O (m) if m > 1 and τ > 1

O (1) if m ≤ 1 and τ ≤ 1

∈ O
(m
r

(logm)log3/2 4
)
.

Observe that when executed on an M(p,B) the network-oblivious algorithm N -Sort

has the property that the word-degree of each superstep is Θ (n/p), hence the lower

bound given in Theorem 4.19 applies to it. �

We conjecture that a similar result can be obtained by adapting other known sorting

algorithms such as, for example, the one in [Goo99].

The following theorem is a consequence of Theorems 4.5 and 4.20:

Corollary 4.21. The above network-oblivious algorithm for the n-Sort problem per-

forms optimally on a D-BSP(P, g,B) where P ≤ n1−ε and 1 ≤ Bi ≤
√
n/p for each

0 ≤ i < logP .

Proof. The proof is similar to the one for Corollary 4.18. �

70 Chapter 4. Network-Oblivious Algorithms

Chapter 5

Network-Oblivious Algorithms for

the Gaussian Elimination Paradigm

An algorithm must be seen to be believed.

(Donald Knuth)

In Chapter 4, we described the network-oblivious framework and proposed some

network-oblivious algorithms for fundamental problems, namely matrix multipli-

cation and transposition, FFT and sorting. In this chapter we present network-

oblivious algorithms which implement the Gaussian Elimination Paradigm (GEP)

[CR06]. Prominent problems, like Floyd-Warshall's all-pairs shortest paths, Gaus-

sian Elimination without pivoting, LU decomposition, and matrix multiplication,

can be solved through this paradigm.

Speci�cally, we propose three algorithms, named N-GEP, εN-GEP and PN-GEP,

which exploit the recursive structure of parallel and cache-oblivious implementations

of GEP introduced in [CR07, CR08]. The three algorithms exhibit optimal commu-

nication and computation complexities in the evaluation model for suitable values

of the processor number and communication block size. Furthermore, N-GEP yields

optimal performance also in the D-BSP model for certain ranges of the parameters.

The rest of the chapter is organized as follows. In Section 5.1, we de�ne GEP

and the two parallel implementations given in [CR07, CR08]. Then, in Section 5.2,

we describe and analyze our network-oblivious algorithms.

71

72 Chapter 5. Network-Oblivious Algorithms for GEP

INPUT: n × n matrix x, function f : S × S × S × S → S, set Σf of triplets
〈i, j, k〉, with 0 ≤ i, j, k < n.

OUTPUT: transformation of x de�ned by f and Σf .
1: for k ← 0 to n− 1 do
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do

4: if 〈i, j, k〉 ∈ Σf then

5: x[i, j]← f(x[i, j], x[i, k], x[k, j], x[k, k]);

Figure 5.1: Gaussian Elimination Paradigm (GEP).

5.1 Preliminaries

5.1.1 De�nition of GEP

Let x be an n × n matrix with entries chosen from an arbitrary domain S, and let

f : S ×S ×S ×S → S be an arbitrary function, which we call update function. (For

simplicity, we assume n to be a power of two). By Gaussian Elimination Paradigm

(GEP) we refer to the computation de�ned by the pseudocode in Figure 5.1 where

the algorithm modi�es x by applying a given set of updates, denoted by 〈i, j, k〉, with
i, j, k ∈ [0, n), of the form

x[i, j]← f(x[i, j], x[i, k], x[k, j], x[k, k]).

We let Σf denote the set of such updates that the algorithm needs to perform. We

refer to Σf and n as update set and input size, respectively. We suppose that the

inclusion check in Line 4 and function f are computed in constant time and without

indirect addressing (for avoiding unexpected cache misses). Observe that an entry

of x can be used many times and assume di�erent values as a result of updates in

Σf ; by changing the order of the updates, the result of the GEP computation can

be di�erent.

As noted in [CR06] and illustrated in Figure 5.2, many problems can be solved

using a GEP computation, including Floyd-Warshall's all-pairs shortest paths, Gaus-

sian Elimination without pivoting, LU decomposition and matrix multiplication.

The following de�nition will be used for proving the correctness of the network-

oblivious algorithms for GEP. We say a GEP computation is commutative if its

update function f exhibits the following property: for each y, u1, v1, w1, u2, v2, and

w2 in S,

f(f(y, u1, v1, w1), u2, v2, w2) = f(f(y, u2, v2, w2), u1, v1, w1).

5.1. Preliminaries 73

INPUT: n× n matrix x.
OUTPUT: Gaussian elimination without pivoting of x.
1: for k ← 0 to n− 1 do

2: for i← 0 to n− 1 do

3: for j ← 0 to n− 1 do

4: if (k < n− 2) ∧ (k < i < n− 1) ∧ (k < j) then
5: x[i, j]← x[i, j]− x[i,k]

x[k,k]x[k, j];

INPUT: n× n matrix x.
OUTPUT: the all-pairs shortest paths of an n-node graph de�ned by the adja-

cency matrix x.
1: for k ← 0 to n− 1 do

2: for i← 0 to n− 1 do

3: for j ← 0 to n− 1 do

4: x[i, j]← x[i, j] min(x[i, k] + x[k, j]);

INPUT: three n× n matrices a, b and c.
OUTPUT: c← a · b.
1: for k ← 0 to n− 1 do

2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: c[i, j]← c[i, j] + a[i, k] · b[k, j];
Remark: the computation requires three matrices, but it can easily transformed
into a GEP computation by considering one n×n matrix that encloses a, b and c.

Figure 5.2: Examples of GEP computations. From the top: Gaussian elimination
without pivoting, Floyd-Warshall's all-pairs shortest paths, matrix multiplication
with semiring operations.

Not all GEP computations are commutative, however all of the instances of GEP for

the aforementioned problems can be easily seen to be commutative.

5.1.2 Previous cache-oblivious and parallel implementations

of GEP

Chowdhury and Ramachandran proposed in [CR06] a cache-oblivious recursive im-

plementation of the GEP paradigm, called I-GEP. It executes updates in Σf in an

order di�erent than the one induced by the algorithm in Figure 5.1. Updates are

performed in I-GEP in such a way to minimize cache misses and increase implicit par-

allelism. In general, changing the order of the updates may yield a di�erent output,

thus a�ecting the correctness of the computation. In fact, it is proved in [Cho07] that

I-GEP produces the correct output under certain conditions on f and Σf , which are

met by all notable instances mentioned before. Furthermore, in [CR07] the authors

present an extension of I-GEP, referred to as C-GEP, which implements correctly any

74 Chapter 5. Network-Oblivious Algorithms for GEP

instance of GEP with no degradation in performance. We refer to the original papers

for more details. The cache complexity of I-GEP is O
(
n3/B

√
M
)
when executed on

an IC(M,B), which is optimal in the worst-case because it matches the lower bound

on the cache complexity of matrix multiplication with semiring operations [HK81].

Below we describe two parallel implementations of I-GEP, which will be at the

base of our network-oblivious algorithms. These two versions, which we name PI-

GEP1 and PI-GEP2, have been presented in [CR07] and [CR08], respectively, for

a CREW (concurrent read, exclusive write) shared-memory model composed of p

processors and one level of cache, which can be either shared or distributed1. In

this model parallel tasks are assigned to processors by a scheduler. PI-GEP1 and

PI-GEP2 correctly solve any GEP computation that is correctly solved by I-GEP,

however they can be extended to fully generality by adopting the ideas in C-GEP.

PI-GEP1, whose pseudocode is reproduced in Appendix B for completeness,

adopts a recursive strategy where in each call it performs all updates

x[i, j]← f(x[i, j], x[i, k], x[k, j], x[k, k])

such that 〈i, j, k〉 ∈ Σf ∩ (I × J ×K), where I = [i0, i1], J = [j0, j1] and K = [k0, k1]

are suitable subranges of the full range [0, n). For the initial call we have I = J =

K = [0, n). Put in another way, we can imagine that the four operands of f come,

in order, from the following four submatrices of x, some of which may coincide:

• X ≡ x[I, J],

• U ≡ x[I,K],

• V ≡ x[K, J],

• W ≡ x[K,K].

There are four di�erent types of recursive calls which are implemented by four re-

cursive functions A, B, C and D. Function A is invoked when I = J = K, hence

X = U = V = W . Function B is invoked when I = K and I ∩ J = ∅, hence X = V

and U = W . Function C is invoked when J = K and I ∩ J = ∅, hence X = U and

V = W . Finally, function D is invoked when both I ∩K = ∅ and J ∩K = ∅, hence
all four submatrices X,U, V and W are disjoint. The initial call is A(x, n). In each

function, the four submatrices X,U, V and W are partitioned into four quadrants

referred to, with obvious notation, as Xi,j, Ui,j, Vi,j and Wi,j, with 0 ≤ i, j ≤ 1, and

the eight subproblems they induce are solved recursively (some in parallel). It is

1In [CR07] and [CR08], both PI-GEP1 and PI-GEP2 are referred to as I-GEP.

5.2. Network-Oblivious Algorithms 75

Algorithm
(constraints on
p and B)

Communication
complexity on

M(p,B)

Computation
complexity on

M(p,B)

Optimality on
M(p,B)

Optimality on
D-BSP(P,g,B)

N-GEP
(p ≤ n2/ log2 n,

B ≥ 1)
O
(

n2

B
√
p + n log2 n

)
Θ
(
n3

p

) when
p ≤ n2/ log4 n

and B ≤
n/(
√
p log2 n)

when
P ≤ n/ log n
and Bi ∈
O
(
n2i/2

P logn

)
εN-GEP with ε

arbitrary
constant in

(0, 1)
(p ≤ n2/ log4/3,
B ≤ (n/

√
p)1+ε)

O
(

n2

B
√
p log2 logn

log(n2/p)

)
O
(
n3

p log2 logn
log(n2/p)

)
when p ≤ n2−δ,

and
B ≤ (n/

√
p)1+ε,

with δ an
arbitrary

constant in (0, 2)

open problem

PN-GEP
(p ≤ n2,
B ≥ 1)

O
(

n2

B
√
p + n

)
Θ
(
n3

p

)
when p ≤ n2 and

B ≤ n/√p no

Figure 5.3: Properties of network-oblivious algorithms described in this chapter.

shown in [CR07] that the algorithm requires O
(
n3/p+ n log2 n

)
computational time

and the number of misses performed by all p processors matches the O
(
n3/B

√
M
)

upper bound of the sequential implementation.

PI-GEP2 is an improved version of [CR08] which achieves optimal computational

time Θ (n3/p+ n), without increasing the number of misses. Its pseudocode is given

in Appendix B. The implementation still uses the four functions A, B, C and D
speci�ed before. However, in any invocation of one of these functions, each of the

submatrices X,U, V and W , of size, say, m ×m, is partitioned into r2 smaller sub-

matrices of size m/r×m/r, which are denoted, with obvious notation, by Xi,j, Ui,j,

Vi,j and Wi,j, with 0 ≤ i, j < r. These smaller submatrices induce r3 subproblems

which are solved in r rounds. Parameter r is a suitable value chosen as a function of

m. When r = 2, PI-GEP2 coincides with PI-GEP1.

5.2 Network-Oblivious Algorithms

In this section we propose three network-oblivious algorithms, N-GEP, εN-GEP and

PN-GEP, for performing GEP computations. They exhibit optimal communication

and computation complexities on an M(p,B) for wide ranges of the parameters and

are based on the shared-memory implementations by [CR07, CR08], brie�y described

in the previous section. Results are summarized in the table in Figure 5.3.

N-GEP is a recursive algorithm, based on PI-GEP1, which exhibits optimal com-

76 Chapter 5. Network-Oblivious Algorithms for GEP

munication and computation complexities on an M(p,B) when p ≤ n2/ log4 n and

B ≤ n/(
√
p log2 n). It also exhibits optimal performance in the D-BSP model for cer-

tain ranges of the parameters. εN-GEP, which is built on PI-GEP2, is an algorithm

parametric in the constant ε ∈ (0, 1). It has optimal communication and computation

complexities when p ≤ n2−δ and B ≤ (n/
√
p)1+ε, where δ is an arbitrary constant

in (0, 2). Thus, εN-GEP exploits large communication blocks more e�ciently than

N-GEP. Furthermore, εN-GEP is interesting since, when ε is increased by a constant

factor, it achieves optimality for larger communication block sizes, while its com-

munication and computation complexities increase only by a constant factor. When

ε tends to one the algorithm becomes N-GEP. We do not analyze its performance

on the D-BSP model. Finally, PN-GEP is a fast algorithm derived by εN-GEP by

setting ε = 0. It exhibits optimal communication and computation complexities on

an M(p,B) when p ≤ n2 and B ≤ n/
√
p. Although PN-GEP exhibits optimality in

the evaluation model, it is not optimal on a D-BSP.

The section is organized as follows: in Section 5.2.1 we describe N-GEP, in Sec-

tion 5.2.2 εN-GEP, and in Section 5.2.3 PN-GEP.

5.2.1 N-GEP

Algorithm Speci�cation

N-GEP (Network-oblivious GEP) is built on PI-GEP1 [CR07], from which it inherits

the recursive structure, and is designed for an M(n2/ log2 n). (The number of PEs in

the speci�cation model re�ects the critical pathlength of PI-GEP1.) Its pseudocode

is given in Figures 5.4, 5.5, 5.6 and 5.7. Here, the construct sync indicates the

global synchronization at the end of a superstep (superstep labels are not reported

for simplicity) and the assignment L2 ← L1, with L1 and L2 matrices of equal

dimension, involves the copy of each entry of L1 into the corresponding entry of L2

and is achieved by means of a suitable communication among the PEs.

N-GEP consists of four functions, A, B, C and D∗: the �rst three functions

are suitable adaptations of their counterparts in PI-GEP1, while D∗ is based on PI-

GEP1's D but solves subproblems in a di�erent order and is equivalent to D when the

GEP computation is commutative. The initial call is A(x, n,P , n2/ log2 n), where

x is the n × n matrix on which the GEP computation has to be performed and

P = {PE0, . . . , PEn2/ log2 n−1} denotes the set of all the M(n2/ log2 n) PEs.

The di�erences between N-GEP and PI-GEP1 are a consequence of the di�erent

models for which they have been designed. Indeed, PI-GEP1 is built on a shared-

memory model featuring concurrent reads and where computation is mapped on

5.2. Network-Oblivious Algorithms 77

processors by a scheduler. On the other hand, N-GEP is de�ned in a distributed-

memory model (i.e., the speci�cation model) where PEs communicate in a point-to-

point fashion and computation has to be explicitly partitioned among the PEs.

Each function receives as inputs at most four m × m matrices (i.e., X, U , V

and W) and the set P containing the q consecutive numbered PEs assigned to the

function. We assume each of the four input matrices to be distributed according

with a row-major layout among min{q,m2} PEs, evenly chosen from the q PEs of

P . We note that the algorithm does not guarantee the number q of assigned PEs to

be small than the number m2 of entries in a matrix.

When m = 1 or q = 1, each function solves the problem sequentially through

I-GEP [CR06]. Observe that the second base case (i.e, q = 1), which is not present

in PI-GEP1, is required since computation has to be explicitly mapped on PEs by

the algorithm (this base case is not required in N-GEP's A because q ≥ m all the

times).

When m > 1 and q > 1, each input matrix is split into four m/2×m/2 quadrants

as in PI-GEP1, and then eight subproblems are solved recursively through calls to A,
B, C and D∗: the order in which subproblems are solved and the parallelism among

them depend on the function and is shown in the pseudocode. The order in which

subproblems are solved in D∗ di�ers from the one used in PI-GEP1's D: hence, the
two functions in general are not equivalent, but D∗ guarantees a constant memory

blow-up, which would not be obtained by PI-GEP1's D.
Each subproblem is solved by q/k consecutive numbered PEs of P , where k, with

k ∈ {1, 2, 4}, denotes the number of subproblems which are solved concurrently. In

functions A, B and C, inputs of the eight subproblems are stored in new matrices of

size m/2 ×m/2 allocated among the q PEs of P ; hence O (dm2/qe) new words per

PE are allocated in each invocation. In contrast, in D∗ no new space is required per

PE.

The following theorem shows that N-GEP can correctly solve a wide class of GEP

computations.

Theorem 5.1. The network-oblivious algorithm N-GEP performs correctly any com-

mutative GEP computation which is correctly solved by PI-GEP1, and each PE ex-

hibits a constant memory blow-up.

Proof. When a GEP computation is commutative, updates in PI-GEP1's D can be

performed in any order since U , V and W are �xed in D. Then, it can be proved by

induction that N-GEP's D∗ is equivalent to PI-GEP1's D. As a consequence, A, B
and C are also equivalent to their respective implementations in PI-GEP1. The �rst

part of the theorem follows.

78 Chapter 5. Network-Oblivious Algorithms for GEP

A(X,m,P, q)
INPUT: matrix X ≡ x[I, I] with I = [i0, i1] ⊆ [0, n) and m = i1 − i0 + 1; segment P of q

consecutive numbered PEs.
OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × I × I).
1: if T = ∅ then return;
2: if m = 1 then
3: X[0, 0]← f(X[0, 0], X[0, 0], X[0, 0], X[0, 0]); // X is a 1× 1 matrix.

4: else

5: Let Xi,j , with 0 ≤ i, j ≤ 1, be the four quadrants of X;
6: Let P0 and P1 be the partition of P where each set contains q/2 consecutive numbered

PEs;
7: Allocate space for eight m/2 ×m/2 matrices denoted as X̃, X̃0, X̃1, U , U ′, V , V ′

and W , which are allocated as follows: U ′ and X̃0 (resp., V ′ and X̃1) are distributed
according with a row-major layout among the �rst min{q/2,m2/4} PEs of P0 (resp.,
P1); X̃, U , V and W are distributed according with a row-major layout among the
�rst min{q,m2/4} PEs of P;

8: X̃ ← X0,0; sync;
9: A(X̃,m/2,P, q);
10: X0,0 ← X̃; sync;

11: X̃0 ← X0,1, X̃1 ← X1,0, U ′ ← X0,0, V ′ ← X0,0; sync;
12: In parallel invoke B(X̃0, U

′,m/2,P0, q/2) and C(X̃0, V
′,m/2,P1, q/2); sync;

13: X0,1 ← X̃0, X1,0 ← X̃1; sync;

14: X̃ ← X1,1, U ← X1,0, V ← X0,1, W ← X0,0; sync;
15: D∗(X̃, U, V,W,m/2,P, q);
16: X1,1 ← X̃; sync;

17: X̃ ← X1,1; sync;
18: A(X̃,m/2,P, q);
19: X1,1 ← X̃; sync;

20: X̃0 ← X1,0, X̃1 ← X0,1, U ′ ← X1,1, V ′ ← X1,1; sync;
21: In parallel invoke B(X̃0, U

′,m/2,P0, q/2) and C(X̃1, V
′,m/2,P1, q/2); sync;

22: X1,0 ← X̃0, X0,1 ← X̃1; sync;

23: X̃ ← X0,0, U ← X0,1, V ← X1,0, W ← X1,1; sync;
24: D∗(X̃, U, V,W,m/2,P, q);
25: X0,0 ← X̃; sync;

26: Delete the eight temporary matrices;

Figure 5.4: Function A of N-GEP.

5.2. Network-Oblivious Algorithms 79

B(X,U,m,P, q)
INPUT: matrices X ≡ x[I, J] and U ≡ x[I, I], with I = [i0, i1] ⊆ [0, n), J = [j0, j1] ⊆

[0, n), I ∩J = ∅ and m = i1− i0 +1 = j1− j0 +1; segment P of q consecutive numbered
PEs.

OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J × I).
1: if T = ∅ then return;
2: if m = 1 or q = 1 then
3: Solve the problem sequentially with I-GEP;
4: else

5: Let Xi,j and Ui,j , with 0 ≤ i, j ≤ 1, be the four quadrants of X and U ;
6: Let P0 and P1 be the partition of P where each set contains q/2 consecutive numbered

PEs;
7: Allocate space for eight m/2 × m/2 matrices, denoted as X̃i, Ui, Vi, and Wi for

0 ≤ i ≤ 1, in such a way that X̃i, Ui, Vi and Wi are distributed according with a
row-major layout among the �rst min{q/2,m2/4} PEs of Pi;

8: X̃i ← X0,i, Ui ← U0,0 for each i with 0 ≤ i ≤ 1; sync;
9: In parallel invoke B(X̃i, Ui,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
10: X0,i ← X̃i for each i with 0 ≤ i ≤ 1; sync;

11: X̃i ← X1,i, Ui ← U1,0, Vi ← X0,i, Wi ← U0,0 for each i with 0 ≤ i ≤ 1; sync;
12: In parallel invoke D∗(X̃i, Ui, Vi,Wi,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
13: X1,i ← X̃i for each i with 0 ≤ i ≤ 1; sync;

14: X̃i ← X1,i, Ui ← U1,1 for each i with 0 ≤ i ≤ 1; sync;
15: In parallel invoke B(X̃i, Ui,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
16: X1,i ← X̃i for each i with 0 ≤ i ≤ 1; sync;

17: X̃i ← X0,i, Ui ← U0,1; Vi ← X1,i, Wi ← U1,1 for each i with 0 ≤ i ≤ 1; sync;
18: In parallel invoke D∗(X̃i, Ui, Vi,Wi,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
19: X0,i ← X̃i for each i with 0 ≤ i ≤ 1; sync;

20: Delete the eight temporary matrices;

Figure 5.5: Function B of N-GEP.

80 Chapter 5. Network-Oblivious Algorithms for GEP

C(X,V,m,P, q)
INPUT: matrices X ≡ x[I, J] and V ≡ x[J, J], with I = [i0, i1] ⊆ [0, n), J = [j0, j1] ⊆

[0, n), I ∩J = ∅ and m = i1− i0 +1 = j1− j0 +1; segment P of q consecutive numbered
PEs.

OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J × J).
1: if T = ∅ then return;
2: if m = 1 or q = 1 then
3: Solve the problem sequentially with I-GEP;
4: else

5: Let Xi,j and Vi,j , with 0 ≤ i, j ≤ 1, be the four quadrants of X and V ;
6: Let P0 and P1 be the partition of P where each set contains q/2 consecutive numbered

PEs;
7: Allocate space for eight m/2 × m/2 matrices, denoted as X̃i, Ui, Vi, and Wi for

0 ≤ i ≤ 1, in such a way that X̃i, Ui, Vi and Wi are distributed according with a
row-major layout among the �rst min{q/2,m2/4} PEs of Pi;

8: X̃i ← Xi,0, Vi ← V0,0 for each i with 0 ≤ i ≤ 1; sync;
9: In parallel invoke C(X̃i, Vi,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
10: Xi,0 ← X̃i for each i with 0 ≤ i ≤ 1; sync;

11: X̃i ← Xi,1, Ui ← Xi,0, Vi ← V0,1, Wi ← V0,0 for each i with 0 ≤ i ≤ 1; sync;
12: In parallel invoke D∗(X̃i, Ui, Vi,Wi,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
13: Xi,1 ← X̃i for each i with 0 ≤ i ≤ 1; sync;

14: X̃i ← Xi,1, Vi ← V1,1 for each i with 0 ≤ i ≤ 1; sync;
15: In parallel invoke C(X̃i, Ui,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
16: Xi,1 ← X̃i for each i with 0 ≤ i ≤ 1; sync;

17: X̃i ← Xi,0, Ui ← Xi,1; Vi ← V1,0, Wi ← V1,1 for each i with 0 ≤ i ≤ 1; sync;
18: In parallel invoke D∗(X̃i, Ui, Vi,Wi,m/2,Pi, q/2) for each i with 0 ≤ i ≤ 1; sync;
19: Xi,0 ← X̃i for each i with 0 ≤ i ≤ 1; sync;

20: Delete the eight temporary matrices;

Figure 5.6: Function C of N-GEP.

5.2. Network-Oblivious Algorithms 81

D∗(X,U, V,W,m,P, q)
INPUT: matrices X ≡ x[I, J], U ≡ x[I,K], V ≡ x[K,J] and W ≡ x[K,K], with I =

[i0, i1] ⊆ [0, n), J = [j0, j1] ⊆ [0, n), K = [k0, k1] ⊆ [0, n), I ∩K = ∅, J ∩K = ∅ and
m = i1− i0 + 1 = j1− j0 + 1 = k1− k0 + 1; segment P of q consecutive numbered PEs.

OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J ×K).
1: if T = ∅ then return;
2: if m = 1 or q = 1 then
3: Solve the problem sequentially with I-GEP;
4: else

5: Let Pi,j , with 0 ≤ i, j ≤ 1, be a partition of P where each set contains q/4 consecutive
numbered PEs;

6: Let Xi,j , Ui,j , Vi,j and Wi,j , with 0 ≤ i, j ≤ 1, be the four quadrants of X, U , V , W ;

7: W0,1 ←W1,1, W1,0 ←W0,0; sync;

8: Execute the following data movements:

• distribute the entries of each of X0,0, U0,0, V0,0 and W0,0 among the PEs in
P0,0 in row-major;

• distribute the entries of each of X0,1, U0,1, V1,1 and W0,1 among the PEs in
P0,1 in row-major;

• distribute the entries of each of X1,0, U1,1, V1,0 and W1,1 among the PEs in
P1,0 in row-major;

• distribute the entries of each of X1,1, U1,0, V0,1 and W1,0 among the PEs in
P1,1 in row-major;

9: sync;
10: In parallel invoke:

D∗(X0,0, U0,0, V0,0,W0,0,m/2,P0,0, q/4),D∗(X0,1, U0,1, V1,1,W0,1,m/2,P0,1, q/4),
D∗(X1,0, U1,1, V1,0,W1,1,m/2,P1,0, q/4),D∗(X1,1, U1,0, V0,1,W1,0,m/2,P1,1, q/4);

11: sync;

12: Execute the following data movements:

• distribute the entries of each of X0,0, U0,1, V1,0 and W1,1 among the PEs in
P0,0 in row-major;

• distribute the entries of each of X0,1, U0,0, V0,1 and W1,0 among the PEs in
P0,1 in row-major;

• distribute the entries of each of X1,0, U1,0, V0,0 and W0,0 among the PEs in
P1,0 in row-major;

• distribute the entries of each of X1,1, U1,1, V1,1 and W0,1 among the PEs in
P1,1 in row-major;

13: sync;
14: In parallel invoke:

D∗(X0,0, U0,1, V1,0,W1,1,m/2,P0,0, q/4),D∗(X0,1, U0,0, V0,1,W1,0,m/2,P0,1, q/4),
D∗(X1,0, U1,0, V0,0,W0,0,m/2,P1,0, q/4),D∗(X1,1, U1,1, V1,1,W0,1,m/2,P1,1, q/4);

15: sync;

16: Re-establish the initial layout; sync;

Figure 5.7: Function D∗ of N-GEP.

82 Chapter 5. Network-Oblivious Algorithms for GEP

Function D∗ does not require additional space. On the other hand, the addi-

tional space required by A, B and C is S(m, q), which is bounded by the following

recurrence:

S(m, q) ≤

 S
(m

2
,
q

2

)
+O

(⌈
m2

q

⌉)
if m > 1 and q > 1

O (1) otherwise

Hence, we yield:

S(m, q) ∈ O
(
m2

q
+ log min{m, q}

)
.

Since the algorithm starts with m = n and q = n2/ log2 n, the additional space per

PE is O
(
log2 n

)
, which is asymptotically optimal because the n2/ log2 n PEs must

hold the n× n input matrix x. �

We observe that if subproblems in function D∗ are solved in the same order of

PI-GEP1's D (see Figure B.4), N-GEP can be extended to perform correctly any

GEP computation which is correctly solved by I-GEP. However, each PE would

exhibit a O (log n) memory blow-up for replicating quadrants of U and V which are

required concurrently by two subproblems. In contrast, the proposed order in D∗

avoids replications and a constant memory blow-up is required.

N-GEP can be extended to correctly implement any commutative GEP compu-

tation, without performance degradation, by adopting the ideas in C-GEP. We do

not analyze this issue further since it does not provide more interesting results.

Complexity of N-GEP on M(p,B)

Here, we provide upper bounds on the communication and computation complexities

of N-GEP when it is executed on an M(p,B) machine.

Theorem 5.2. A commutative GEP computation on an n × n matrix can be per-

formed by N-GEP with communication and computation complexities

HN−GEP(n, p,B) ∈ O
(

n2

B
√
p

+ n log2 n

)
, (5.1)

TN−GEP(n, p,B) ∈ Θ

(
n3

p

)
. (5.2)

on an M(p,B), for 1 < p ≤ n2/ log2 n and B ≥ 1.

Proof. It is easily seen that functions B and C exhibit the same complexities, hence

we will analyze only B. Consider the execution of T , for T ∈ {A,B,D∗}, with input

5.2. Network-Oblivious Algorithms 83

sizem and q assigned PEs. We denote with r, where r ≤ q, the number of consecutive

M(p,B) processors that simulate the q PEs, and with HT (m, r) the communication

complexity of T . Observe that m2 can be either smaller or bigger than q. To simplify

the notation, we omit B from HT (m, r). When T is in a base case or is completely

solved by PEs simulated by the same processor, there is no communication, hence

HT (m, r) = 0. Otherwise, each processor performs a constant number of supersteps

with block-degree O (dm2/Bre) for redistributing data.

When T = D∗, we have:

HD∗(m, r) ≤

 2HD∗
(m

2
,
r

4

)
+O

(⌈
m2

Br

⌉)
if m > 1 and r > 1

0 if m ≤ 1 or r ≤ 1

which yields

HD∗(m, r) ∈ O
(⌈

m2

Br

⌉
min

{√
r,m

})
. (5.3)

The communication complexity of B is provided by the following recursive rela-

tion:

HB(m, r) ≤

 2HB

(m
2
,
r

2

)
+ 2HD∗

(m
2
,
r

2

)
+O

(⌈
m2

Br

⌉)
if m > 1 and r > 1

0 if m ≤ 1 or r ≤ 1

≤ 2iHB

(m
2i
,
r

2i

)
+O

(
i∑

j=1

2j
(
HD∗

(m
2j
,
r

2j

)
+

⌈
m2

2jBr

⌉))
.

The last two terms in the summation can be upper bounded by Equation 5.3. If

m ≥ r, the recurrence stops when the subproblem is solved by an unique M(p,B)

processor. Hence by setting i = log r, we get

HB(m, r) ∈ O

(
log r∑
j=1

2j
⌈
m2

2jBr

⌉√
r

2j

)
∈ O

(
m2

B
√
r

+ r

)
. (5.4)

Ifm < r, the recurrence stops when the subproblem size is one. By setting i = logm,

we have

HB(m, r) ∈ O

logdm2/re∑
j=1

2j
⌈
m2

2jBr

⌉√
r

2j
+

logm∑
j=logdm2/re+1

2j
⌈
m2

2jBr

⌉
m

2j

 ,

84 Chapter 5. Network-Oblivious Algorithms for GEP

which yields

HB(m, r) ∈ O
(
m2

B
√
r

+m logm

)
. (5.5)

Note that the upper bound given by Equation 5.5 does not match the one in Equa-

tion 5.4 when r = Θ (m), and that HB(m, r) when m ≥ r can also be upper bounded

by Equation 5.5.

The communication complexity of A is given by the following recurrence:

HA(m, r) ≤

≤

 2HA

(m
2
, r
)

+ 2HB

(m
2
,
r

2

)
+ 2HD∗

(m
2
,
r

2

)
+O

(⌈
m2

Br

⌉)
if m > 1

0 if m ≤ 1

Observe that the recursion in function A stops when the subproblem size is one,

that is, when i = logm. Since HB(m, r) and HD∗(m, r) are both upper bounded by

Equation 5.5, we have:

HA(m, r) ∈ O

(
logm∑
j=1

(
m2

2jB
√
r

+m log
m

2j

))
,

from which we get

HA(m, r) ∈ O
(
m2

B
√
r

+m log2m

)
.

Since HN−GEP(n, p,B) = HA(n, p), Equation 5.1 follows.

Let us denote with TT (m, q, r) the computation complexity of function T . Re-

minding that the number q of M(n2/ log2 n) PEs can be bigger that m2, we note

that each PE performs O (dm2/qe) operations on local data in each superstep, and

therefore eachM(p,B) processor performs O (dm2/qe(q/r)) operations per superstep.

The computation complexity of D∗ is upper bounded as follows:

TD∗(m, q, r) ≤

2TD∗

(m
2
,
q

4
,
r

4

)
+O

(⌈
m2

q

⌉
q

r

)
if m > 1 and r > 1

8TD∗
(m

2
,
q

4
, 1
)

+O

(⌈
m2

q

⌉
q

)
if m > 1, q > 1 and r ≤ 1

m3 if m ≤ 1 or q ≤ 1

5.2. Network-Oblivious Algorithms 85

By unfolding the recurrence, we have:

TD∗(m, q, r) ≤

≤

2iTD∗

(m
2i
,
q

4i
,
r

4i

)
+O

(
m2

r
2i +

q

r
2i
)

if m > 1 and r > 1

8iTD∗
(m

2i
,
q

4i
, 1
)

+O
(
2im2 + 2iq

)
if m > 1, q > 1 and r ≤ 1

m3 if m ≤ 1 or q ≤ 1

which yields

TD∗(m, q, r) ∈ O
(
m3

r
+
mq

r

)
.

The computation complexity of B is given by the following relation:

TB(m, q, r) ≤

≤

2TB

(m
2
,
q

2
,
r

2

)
+ 2TD∗

(m
2
,
q

2
,
r

2

)
+O

(⌈
m2

q

⌉
q

r

)
if m > 1 and r > 1

4TB

(m
2
,
q

2
, 1
)

+ 2TD∗
(m

2
,
q

2
, 1
)

+O

(⌈
m2

q

⌉
q

)
if m > 1, q > 1 and r ≤ 1

m3 if m ≤ 1 or q ≤ 1

≤

2iTB

(m
2i
,
q

2i
,
r

2i

)
+O

(
i∑

j=1

(
m3

2jr
+
mq

r

))
if m > 1 and r > 1

4iTB

(m
2i
,
q

2i
, 1
)

+O

(
i∑

j=1

(
m3

2j
+mq

))
if m > 1, q > 1 and r ≤ 1

m3 if m ≤ 1 or q ≤ 1

Hence,

TB(m, q, r) ∈ O
(
m3

r
+
mq

r
logm

)
.

The computation complexity of A is given by the following relation:

TA(m, q, r) ≤

≤

 2TA

(m
2
, q, r

)
+ 2TB

(m
2
,
q

2
,
r

2

)
+ 2TD∗

(m
2
, q, r

)
+O

(⌈
m2

q

⌉
q

r

)
if m > 1

O (1) if m ≤ 1

∈ O

(
2iTA

(m
2ir

, q, r
)

+

logm∑
i=1

(
m3

4j
+
mq

r
logm

))

which gives

TA(m, q, r) ∈ O
(
m3

r
+
mq

r
log2m

)
.

86 Chapter 5. Network-Oblivious Algorithms for GEP

Since TN−GEP(n, p,B) = TA(n, n2/ log2 n, p), Equation 5.2 follows. �

Corollary 5.3. A commutative GEP computation on an n × n matrix can be per-

formed by N-GEP with optimal communication and computation complexities when

1 < p ≤ n2/ log4 n and B ≤ n/(
√
p log2 n).

Proof. The n-MM problem (i.e., matrix multiplication with only semiring opera-

tions) can be computed by a commutative GEP computation. Hence, lower bounds

on communication and computation complexities for matrix multiplication trans-

late into worst-case lower bounds for an algorithm which performs any commutative

GEP computation. An algorithm for solving the n-MM problem on M(p,B) requires

Ω (n3/p) operations and Ω
(
n2/B

√
p
)
communications per processor if each one uses

Θ (n2/p) words (Theorem 4.6). It follows that N-GEP is optimal when p ≤ n2/ log4 n

and B ≤ n/(
√
p log2 n), since each PE ofM(n2/ log2 n) uses Θ

(
log2 n

)
space and each

M(p,B) processor simulates n2/(p log2 n) PEs. �

D-BSP

We conclude by showing that, under certain circumstances, N-GEP performs opti-

mally also on a D-BSP. Theorem 4.5 proves that a network-oblivious algorithm which

performs optimally on an M(p,B) for some values of p and B and satis�es some

assumptions on the granularity and wiseness of communications exhibits asymptot-

ically optimal communication time also in the D-BSP model for a wide range of

parameters. However, this theorem cannot be applied to N-GEP, because it does

not satisfy the wiseness assumption. This is due to the fact that, when executing

N-GEP on M(p, 1), many supersteps are such that some PEs of M(n2/ log2 n) do not

send messages. Nevertheless, the next theorem and corollary show that N-GEP is

still optimal in the D-BSP model:

Theorem 5.4. A commutative GEP computation on an n × n matrix can be per-

formed by N-GEP with communication and computation times

DN−GEP(n, P, g,B) ∈ O

(
logP−1∑
i=0

(
n22

i
2

BiP
+ n log n

)
gi

)
(5.6)

TN−GEP(n, P, g,B) ∈ Θ

(
n3

P

)
(5.7)

on a D-BSP(P, g,B), for 1 < P ≤ n2/ log2 n.

5.2. Network-Oblivious Algorithms 87

Proof. As before, we consider only one among functions B and C, since they have the
same asymptotic complexities. Remember that Bj and gj denote the block size and

the inverse of the bandwidth, respectively, in a j-cluster with r = P/2j processors.

Consider the execution of function T , with T ∈ {A,B,D∗}, in a D-BSP(P,g,B) with

input size m and q assigned PEs; let j be the label of the cluster (hence r = P/2j

processors) that simulates the q PEs. We denote with DT (m, j) the communication

time of T . For notational convenience, we leave B and g out from DT (m, j). The

DT (m, j)'s are derived by recursive relations similar to ones employed in Theorem 5.2

for the communication complexity; however, di�erent Bi's and gi's are used in each

recursive level.

The communication time of D∗ is given by the following recurrence:

DD∗(m, j) ≤

 2DD∗
(m

2
, j + 2

)
+O

(⌈
m22j

BjP

⌉
gj

)
if m > 1 and j < logP

0 if m ≤ 1 or j ≥ logP

∈ O

(
2iDD∗

(m
2i
, j + 2i

)
+

i−1∑
k=0

2k
(

m22j

Bj+2kP
+ 1

)
gj+2k

)
.

By observing that the recurrence terminates when m/2i ≤ 1 if m2 < P/2j and when

j + 2i ≥ logP otherwise, we derive the following bound:

DD∗(m, j) ∈ O

log min
nq

P

2j
,m

o
−1∑

k=0

2k
(

m22j

Bj+2kP
+ 1

)
gj+2k

 ,

which, by changing the index of the summation, yields:

DD∗(m, j) ∈ O

log min{P,m22j}−2∑
i=j

2
i−j
2

(
m22j

BiP
+ 1

)
gi

 . (5.8)

The communication time of function B is given by the following recurrence:

DB(m, j) ≤

≤

 2DB

(m
2
, j + 1

)
+ 2DD∗

(m
2
, j + 1

)
+O

(⌈
m22j

BjP

⌉
gj

)
if m > 1 and j < logP

0 if m ≤ 1 or j ≥ logP

∈ O

(
2iDB

(m
2i
, j + i

)
+

i∑
k=1

2k
(
DD∗

(m
2k
, j + k

)
+

(
m22j

2kBj+k−1

+ 1

)
gj+k−1

))
.

88 Chapter 5. Network-Oblivious Algorithms for GEP

As in the derivation ofDD∗(m, j), we observe that the recurrence ends whenm/2
i ≤ 1

if m < P/2j and when j + i ≥ logP otherwise, and we get

DB(m, j) ∈ O

log min{ P
2j
,m}∑

k=1

2kDD∗
(m

2k
, j + k

)
+

(
m22j

Bj+k−1

+ 2k
)
gj+k−1

 .

Since DD∗(m, j) is bounded by Equation 5.8, which assumes two di�erent values

according with the relative values of m, j and P , we have:

DB(m, j) ∈ O

D1(m, j) +D2(m, j) +

log min{ P
2j
,m}−1∑

k=0

(
m22j

Bj+kP
+ 2k

)
gj+k

 ,

where D1(m, j) includes the contributions of 2kDD∗(m/2
k, j + k) for those values of

k for which m2/4k ≥ P/2j+k, while D2(m, j) includes the others. Thus, recalling

that P/2j can be bigger than m2, we have2:

D1(m, j) ∈ O

log
l
m22j

P

m∑
k=1

logP−1∑
i=j+k

2
i−j
2

(
m22j

2
k
2BiP

+ 2
k
2

)
gi

 ,

which, after tedious but simple calculations, yields

D1(m, j) ∈ O

(
logP−1∑
i=j+1

2
i−j
2

(
m22j

BiP
+ 2

i−j
2

)
gi

)
.

D2(m, j) is bounded as follows:

D2(m, j) ∈ O

 logm∑
k=1+log

l
m22j

P

m
j+logm2−k−1∑

i=j+k

2
i−j
2

(
m22j

2
k
2BiP

+ 2
k
2

)
gi

from which we derive:

D2(m, j) ∈ O

log min{P,m22j}−2∑
i=1+j+log

l
m22j

P

m
(

2
i−j
2
m22j

BiP
+m

)
gi

 .

2For notational convenience we impose
∑b
j=a(. . .) = 0 when a > b.

5.2. Network-Oblivious Algorithms 89

Hence, we get:

DB(m, j) ∈ O

log min{P,m22j}−1∑
i=j

(
2
i−j
2
m22j

BiP
+m

)
gi

 . (5.9)

Finally, we can derive the communication time of A from the following recursive

relation:

DA(m, j) ≤

≤

 2DA

(m
2
, j
)

+ 2DB

(m
2
, j + 1

)
+ 2DD∗

(m
2
, j
)

+O

(⌈
m22j

BjP

⌉
gj

)
if m > 1

0 if m ≤ 1

∈ O

(
2iDA

(m
2i
, j
)

+
i∑

k=1

2k
(
DB

(m
2k
, j + 1

)
+DD∗

(m
2k
, j
)

+

⌈
m22j

4kBjP

⌉
gj

))

By observing that the right-hand side of Equation 5.9 gives also an upper bound on

DD∗(m, j), we get:

DA(m, j) ∈ O

(m22j

BjP
+m

)
gj +

logm∑
k=1

log min
n
P,m

22j

4k

o
−1∑

i=j

(
2
i−j
2
m22j

2kBiP
+m

)
gi

which, after some calculations, yields:

DA(m, j) ∈ O

min{P,m22j}−1∑
i=j

(
2
i−j
2
m22j

BiP
+m logm

)
gi

 .

Since DN−GEP(n, P,g,B) = DA(n, 0) and P ≤ n2, Equation 5.6 follows.

The computation time of N-GEP corresponds to the computation complexity of

N-GEP on M(P, 1), since it is independent of the communication block size. �

Corollary 5.5. The communication time of N-GEP on a D-BSP(P, g,B) is optimal

when P ≤ n/ log n and Bi ∈ O
(
n2i/2

P logn

)
for each 0 ≤ i < logP .

Proof. Remember that Equation 4.7 bounds from below the communication time

required for solving the n-MM problem on a D-BSP where Bi ≤ n2/P and each

processor uses Θ (n2/P) space. By setting P ≤ n/ log n and Bi ∈ O
(
n2i/2

P logn

)
for

0 ≤ i < logP , Equation 5.6 matches the lower bound for matrix multiplication. The

90 Chapter 5. Network-Oblivious Algorithms for GEP

result follows by recalling that the n-MM problem can be solved by a commutative

GEP computation, and that N-GEP uses Θ (n2/P) space per processor. �

The ranges of D-BSP optimality for N-GEP can be widened. Indeed, if gi =

g(P/2i)α and Bi = b(P/2i)β, with α and β constants in (0, 1) and b, g > 0 arbi-

trary constants (this is the case of many point-to-point interconnections [BFPP01]),

communication optimality is obtained for each P ≤
(

n
b logn

)2/(1+2α)

. Finally, observe

that the algorithm exhibits optimal computation time for every P ≤ n2/ log2 n,

independently of the values of B and g.

5.2.2 εN-GEP

εN-GEP requires a slight di�erent de�nition of network-oblivious algorithm. We still

de�ne it as a sequence of labelled supersteps, but we allow some PEs to skip some

supersteps with the following restriction: if PEj does not perform an i-superstep s,

then also all processing elements PEk, where k shares the i most signi�cant bits with

j, do not perform s. In other words, we allow some i-clusters to be idle while the

others are executing an i-superstep.

Algorithm speci�cation

εN-GEP (ε-Network-oblivious GEP) extends N-GEP as PI-GEP2 [CR08] extends PI-

GEP1[CR07]: in each function, the at most four input matrices are divided intom2−2ε

submatrices of size mε ×mε, referred as Xi,j, Ui,j, Vi,j and Wi,j for
3 0 ≤ i, j < m1−ε,

and then m3−3ε subproblems are solved through recursive calls. The order in which

subproblems are solved is di�erent from the one adopted in PI-GEP2, however εN-

GEP's A, B and C are completely equivalent to their counterpart in PI-GEP2, while

D∗ corresponds to PI-GEP2's D when the GEP computation is commutative, as in

N-GEP. The adopted order is a consequence of the speci�cation model, since it does

not feature concurrent reads as in PI-GEP2, and allows the algorithm to yield a

constant memory blow-up.

We assume that each input matrix at the beginning and at the end of a recursive

call is distributed among the q PEs according with a bit interleaved layout4. We

3X0,j (resp. Xm1−ε−1,j) represents the submatrices at the top (resp., bottom) of X, while Xi,0

(resp., Xi,m1−ε−1) represents the submatrices at the left (resp., right) of X. Similarly for Ui,j , Vi,j
and Wi,j .

4An n × n matrix E is distributed according with the bit-interleaved layout among r PEs,
PE0,PE1,. . . PEr−1, of M(h(n)) as follows: E is divided into r submatrices Ei,j , with 0 ≤ i, j <

√
r,

of size n/
√
r × n/

√
r. Each Ei,j is assigned to each PEk where k = B−1(B(i) ./ B(j)), adopting

the notation introduced in Section 4.2.2.

5.2. Network-Oblivious Algorithms 91

denote by Pi,j, with 0 ≤ i, j < m1−ε, the q/m2−2ε (consecutive numbered) PEs that

hold Xi,j, Ui,j, Vi,j and Wi,j when the function begins, and with Xk
i,j, for 0 ≤ k <

m1−ε, the value of Xi,j when it has been updated by k recursive calls to A, B, C or

D∗ (X0
i,j re�ects the initial value of Xi,j).

Each function, when not in a base case, consists of a number of phases and during

each phase PEs in Pi,j computes recursively Xk
i,j for some k or are idle. The four

functions are de�ned below (we do not use pseudocode due to the technical di�cult

of the algorithm).

• Base case of each function: m ≤ log2/3 log n. The problem is solved se-

quentially by a PE by means of I-GEP [CR06]. After the description of the

four functions, it will be simple to see that q ≤ 1 when m ≤ log2/3 log n.

• Function A(X,m, q): It consists of 5m1−ε − 4 phases during which each Pi,j,
if not idle, computes Xk

i,j for some k, with 0 ≤ k < m1−ε, and sends/receives

messages to/from its neighbors (i.e., Pi±1,j±1) through a superstep involving

the q PEs. During the t-th phase, with 1 ≤ t ≤ 5m1−ε − 4, each Pi,j, with
0 ≤ i, j < m1−ε, performs one of the following cases according with the relative

values of i, j and t:

� Case 1: there exists an integer k, with 0 ≤ k < m1−ε, such that t = 3k+ 1

and i = j = k. Pk,k computes recursively A(Xk−1
k,k ,m

ε, q/m2−2ε), and then

forwards Xk
k,k to Pk±1,k and Pk,k±1.

� Case 2: there exists an integer k, with 0 ≤ k < m1−ε, such that t =

3k + 1 + |k − j|, i = k and j 6= k. Suppose j > k: Pk,j receives Xk
k,k

from Pk,j−1 and solves recursively B(Xk−1
k,j , X

k
k,k,m

ε, q/m2−2ε); then, Xk
k,j

is forwarded to Pk±1,j and X
k
k,k to Pk,j+1 and Pk±1,j. Case j < k is similar.

� Case 3: there exists an integer k, with 0 ≤ k < m1−ε, such that t =

3k + 1 + |k − i|, j = k and i 6= k. Suppose i > k: Pi,k receives Xk
k,k

from Pi−1,k and solves recursively C(Xk−1
i,k , Xk

k,k,m
ε, q/m2−2ε); then, Xk

i,k

is forwarded to Pi,k±1 and Xk
k,k to Pi+1,k. Case i < k is similar.

� Case 4: there exists an integer k, with 0 ≤ k < m1−ε, such that t =

3k + 1 + |k − i|+ |k − j| and i, j 6= k. Suppose i, j > k; Pi,j receives Xk
k,k

and Xk
k,j from Pi−1,j and Xk

i,k from Pi,j−1; then it computes recursively

D(Xk−1
i,j , Xk

i,k, X
k
k,j, X

k
k,k) and forwards Xk

k,j and Xk
k,k to Pi,j+1, and Xk

i,k

to Pi+1,j. Cases i, j < k, i < k < j and j < k < i are similar.

� Case 5: Pi,j does not belong to one of the above cases. Pi,j is idle until

the t-th phase ends.

92 Chapter 5. Network-Oblivious Algorithms for GEP

• Function B(X,U,m, q): It consists of 3m1−ε + logm1−ε − 2 phases. In each

phase, Pi,0, . . .Pi,m1−ε−1 compute in parallel and recursively Xk
i,0,. . . , X

k
i,m1−ε−1

for some k, with 0 ≤ k < m1−ε, using Ui,k, and send/receive messages through

a superstep involving all q PEs. Note that Ui,k is required in m1−ε subproblems

concurrently, hence it must be replicated m1−ε times. During the t-th phase,

with t > logm1−ε, each Pi,j, with 0 ≤ i, j < m1−ε, performs one of the following

cases according with the relative values of i, j and t:

� Case 1: there exists an integer k, with 0 ≤ k < m1−ε, such that t =

2k + 1 + logm1−ε and i = k. Each Pk,j, with 0 ≤ j < m1−ε, computes

recursively B(Xk−1
k,j , Uk,k,m

ε, q/m2−2ε) and forwardXk
k,j and Uk,k to Pk±1,j.

� Case 2: there exists an integer k, with 0 ≤ k < m1−ε, such that t =

2k + 1 + logm1−ε + |k − i| is an integer and i 6= k. Suppose i > k: each

Pi,j, with 0 ≤ j < m1−ε, receives Xk
k,j and Uk,k from Pi−1,j and computes

recursively D∗(Xk−1
i,j , Ui,k, X

k
k,j, Uk,k); �nally, X

k
k,j and Uk,k are forwarded

to Pi+1,j. The case i < k is similar.

� Case 3: Pi,j does not belong to one of the above cases. Pi,j is idle until

the t-th phase ends.

Each Pi,j performs also the replications described below. Ui,k, with 0 ≤ i, k <

m1−ε, must be in Pi,j for every 0 ≤ j < m1−ε at the beginning of the 2k +

1 + logm1−ε + |k − i|-th phase. The replication of Ui,k is performed by the

m1−ε Pi,j starting from the 2k+ 1 + |k− i|-th phase using a binary tree. Thus,

Pi,0, . . .Pi,m1−ε−1 start a new replication every two phases and perform at most

(logm1−ε)/2 concurrent replications. If the copies are not evenly distributed,

some Pi,j could exhibit a non constant memory blow-up. However, it is not

di�cult to see that there are no more than O (m1−ε) copies in Pi,0, . . .Pi,m1−ε−1

at any time and, if copies are evenly distributed among the Pi,j, each PE incurs

a constant memory blow-up.

In order to keep the memory blow-up constant, we impose that Pk,j, with 0 ≤
j < m1−ε, contains only Xk−1

k,j and Uk,k when the call B(Xk−1
k,j , Uk,k,m

ε, q/m1−ε)

is invoked during the 2k + 1 + logm1−ε-th phase; if Pk,j holds other variables
(e.g., for replications), then they are moved to P(k+1) mod m1−ε,j before the call

to B, and then bring back after it.

• Function C(X, V,m, q): It is similar to function B, but the roles of U and V

and of rows and columns are inverted.

5.2. Network-Oblivious Algorithms 93

• Function D∗(X,U, V,W,m, q): It consists of m1−ε phases. In the t-th one,

Pi,j computes recursively D(Xk−1
i,j , Ui,k, Vk,j,Wk,k) where k = (i + j + t − 1)

mod m1−ε. Each submatrix of X, U and V is used once in each phase and they

are moved to the respective Pi,j through a permutation. However, Wk,k is used

m1−ε times in each phase: since only entries on the left-to-right diagonal of W

are used, each Wk,k can be replicated m1−ε times at the beginning of function

D∗ by setting Wk,j = Wk,k for each 0 ≤ j < m1−ε.

Theorem 5.6. The network-oblivious algorithm εN-GEP performs correctly any

commutative GEP computation that is correctly solved by PI-GEP2, and each PE

exhibits a constant memory blow-up.

Proof. Let us prove the �rst part of the theorem by showing that εN-GEP, when

the GEP computation is commutative, is equivalent to the PI-GEP2 implementation

shown in Figure B.5 with r = m1−ε. The base cases (m ≤ log2/3 log n) are obviously

correct, then we assume m > log2/3 log n.

• Function D∗: When the GEP computation is commutative, the order by

which subproblems are scheduled in D∗ does not matter since U , V and the

left-to-right diagonal ofW do not change within function D∗. Hence εN-GEP's
D∗ gives the same result of PI-GEP2's D.

• Function B: Let us de�ne

τ(i, k) = logm1−ε + 2k + 1 + |k − i|.

Since a replication requires logm1−ε phases, Ui,k is in Pi,j for every j with

0 ≤ j < m1−ε at the beginning of the τ(i, k)-th phase. By an inductive

argument on k, it can be proved that Xk
i,j is solved by Pi,j during the τ(i, k)-th

phase.

Denote by X̃k
i,j the value of Xi,j in PI-GEP2 when it has been updated by k

recursive calls to B or D (X̃0
i,j re�ects the initial value of Xi,j). Remember that

εN-GEP's D∗ is equivalent to PI-GEP2's D; then, by inductively assuming that

εN-GEP's B coincides with PI-GEP2's B for smaller problems (which is true

in the base case), it can be proved that Xk
i,j = X̃k

i,j for each 0 ≤ i, j, k < m1−ε

by induction on k.

• Function C: εN-GEP's function C coincides with PI-GEP2's function C, and
the proof is a straightforward adaptation of the previous one.

94 Chapter 5. Network-Oblivious Algorithms for GEP

• Function A: By an inductive argument on k, it can be proved that Xk
i,j is

solved by Pi,j during the τ(i, j, k)-th phase, where

τ(i, j, k) = 3(k − 1) + |k − i|+ |k − j|.

Denote with X̃k
i,j the value of Xi,j in PI-GEP2 when it has been updated by k

recursive calls to A, C, B or D (X̃0
i,j re�ects the initial value of Xi,j). Remember

that εN-GEP's D∗, B and C are equivalent to their counterpart in PI-GEP2;

then, by inductively assuming that εN-GEP's A coincides with PI-GEP2's A
for smaller problems (which is true in the base case), it can be proved that

Xk
i,j = X̃k

i,j for each 0 ≤ i, j, k < m1−ε by induction on k.

It follows that εN-GEP is equivalent to PI-GEP2 for commutative GEP compu-

tations. By construction, each PE uses O
(

log4/3 log n
)
space which is optimal since

there are n2/ log4/3 log n PEs and the input matrix has size n × n. The theorem

follows. �

We observe that if subproblems in function D∗ are solved in the same order of

PI-GEP2's D, εN-GEP can be extended to perform correctly any GEP computation

which is correctly solved by I-GEP. However, each PE would exhibit a O (log log n)

memory blow-up for replicating submatrices of U and V which are required con-

currently by many subproblems in D. In contrast, the proposed order in D∗ avoids
replications and incurs a constant memory blow-up.

As in N-GEP, εN-GEP can be extended to correctly implement any commutative

GEP computation, without performance degradation, by adopting the ideas in C-

GEP.

Complexity of εN-GEP on M(p,B)

Here, we provide upper bounds on the communication and computation complexities

of εN-GEP when it is executed on an M(p,B) machine. To this purpose we need the

following technical lemma, which is used in the proof of the subsequent theorem for

solving some recurrence relations.

Lemma 5.7. Let 0 < ε < 1 be a constant and i ≥ 1 an integer. Then, for m > 1,

we have:
i∑

j=1

1

mεj
∈ Θ

(
1

mεi

)
and

i∑
j=1

mεj ∈ Θ (mε) .

Proof. Let ` = log((1− ε))/ log ε. If i < `, the summation has a constant number of

terms, hence the theorem follows.

5.2. Network-Oblivious Algorithms 95

Suppose i > `. When 1 ≤ j ≤ i− `, we get:

mεj

mεj+1 = mεj(1−ε) ⇒ mεj = mεj(1−ε)mεj+1 ≥ mεimεj+1

, (5.10)

from which follows that mεj ≥ (mεi)i−`−jmεi−` if j ≤ i− `. Therefore we have:

i∑
j=1

1

mεj
≤ 1

mεi−`

i−∑̀
j=1

1

(mεi)i−`−j
+

i∑
j=i−`+1

1

mεj

≤ 1

mεi

i−`−1∑
j=0

1

(mεi)j
+ `

1

mεi
∈ Θ

(
1

mεi

)
,

from which follows the �rst part of the lemma.

For j ≤ i− `, we derive the following inequality from Equation 5.10:

mεj+1 ≤ mεj

mεi
⇒ mεj ≤ mε

(mεi)j−1
.

Thus:

i∑
j=1

mεj ≤ mε

i−∑̀
j=1

1

(mεi)j−1
+

i∑
j=i−`+1

mεj ∈ Θ (mε) ,

which proves the second part of the lemma. �

Theorem 5.8. Let ε be a constant in (0, 1). A commutative GEP computation on

an n× n matrix can be performed by εN-GEP with communication and computation

complexities:

HεN−GEP(n, p,B) ∈ O
(

n2

B
√
p

log2 log n

log(n2/p)

)
, (5.11)

TεN−GEP(n, p,B) ∈ O
(
n3

p
log2 log n

log(n2/p)

)
, (5.12)

on an M(p,B), with 1 < p ≤ n2/ log4/3 log n and 1 ≤ B ≤
(
n/
√
p
)1+ε

.

Proof. As before, we consider functions B and C equivalent. Consider the execution
of T , for T ∈ {A,B,D∗}, with input size m and q assigned PEs. We denote with

r, where r ≤ q, the number of consecutive M(p,B) processors that simulate the

q PEs, and with HT (m, r) the communication complexity of T . For notational

convenience, we omit B from HT (m, r). Since m2/r equals n2/p in each recursive

96 Chapter 5. Network-Oblivious Algorithms for GEP

call and B ≤ (n/
√
p)1+ε, we have B ≤ (m/

√
r)1+ε.

Let us consider function D∗. If r ≤ m2−2ε, we have that

HD∗(m, r) ∈ O
(
m2

B
√
r

)
.

Indeed each processor simulates PEs in Pi,j with i ∈ [i0..i1] and j ∈ [j0..j1], where

i0, i1, j0, j1 are suitable values and i1 − i0 = j1 − j0 = m1−ε/
√
r. Moreover, it

is not di�cult to see that all PEs in Pi,j send/receive O (m2ε) messages to/from

PEs in P(i±1) mod m1−ε,(j±1) mod m1−ε , during the O (m1−ε) supersteps. If r > m2−2ε,

HD∗(m, r) is given by the following recurrence:

HD∗(m, r) ≤

m1−εHD∗

(
mε,

r

m2−2ε

)
+O

(
m1−εm

2

Br

)
if r > m2−2ε

O

(
m2

B
√
r

+m1−ε
)

if r ≤ m2−2ε

≤ m1−εiHD∗
(
mεi ,

r

m2−2εi

)
+O

(
m2

Br

i∑
j=1

m1−εj
)
,

which yields

HD∗(m, r) ∈ O
(
m2

B
√
r

)
.

Let us consider function B. If r ≤ m2−2ε, the communication complexity of B is:

HB(m, r) ∈ O
(
m2

B
√
r

)
. (5.13)

Indeed, replications of U 's submatrices require

O

(⌈
m2ε

B

⌉
m1−ε
√
r

log r

)
blocks, whilst other

O

(⌈
m1+ε

B
√
r

⌉
m1−ε

)
blocks are required for communications between adjacent rows. Equation 5.13 follows

since B ≤ (m/
√
r)1+ε. On the other hand, if r > m2−2ε, HB(m, r) is given by the

5.2. Network-Oblivious Algorithms 97

following recurrence:

HB(m, r) ≤

≤

m1−εHB

(
mε,

r

m2−2ε

)
+O

(
m1−ε

(
HD∗

(
mε,

r

m2−2ε

)
+
m2

Br

))
if r > m2−2ε

O

(
m2

B
√
r

+m1−ε
)

if r ≤ m2−2ε

≤ m1−εiHB

(
mεi ,

r

m2−2εi

)
+O

(
m2

B
√
r
i

)
.

Hence,

HB(m, r) ∈ O
(
m2

B
√
r

logε
logm2/r

logm

)
.

Similarly, if r ≤ m2−2ε, the communication complexity of A is

HA(m, r) ∈ O
(
m2

B
√
r

)
,

while, if r ≤ m2−2ε, HA(m, r) is given by the following recurrence:

HA(m, r) ≤

≤

m1−εHA

(
mε,

r

m2−2ε

)
+O

(
m1−εHB

(
mε,

r

m2−2ε

)
+m1−εHD∗

(
mε,

r

m2−2ε

)
+m1−εm

2

Br

)
if r > m2−2ε

O

(
m2

B
√
r

+m1−ε
)

if r ≤ m2−2ε

From which follows that

HA(m, r) ≤ m1−εHA

(
mε,

r

m2−2ε

)
+O

(
i
m2

B
√
r

logε
logm2/r

logm

)
,

and then

HA(m, r) ∈ O
(
m2

B
√
r

log2
ε

logm2/r

logm

)
. (5.14)

Since HεN−GEP(n, p,B) = O (HA(n, p)) and ε is a constant in (0, 1), Equation 5.11

follows.

Note that in εN-GEP there are some idle PEs in each superstep. In the network-

oblivious algorithms described previously there are no idle PEs and the overhead

incurred simulating each such network-oblivious algorithm on M(p,B) is asymptoti-

98 Chapter 5. Network-Oblivious Algorithms for GEP

cally negligible compared to the number of operations of the algorithm itself. How-

ever, when there are idle processors, this could not be the case: thus, we analyze the

computation complexity of εN-GEP in a di�erent way. The computation complexity

is given by the sum of the following two contributions:

• T a(n, p): computation complexity of εN-GEP on M(p,B) without considering

the simulation.

• T s(n, p): the overhead incurred when simulating εN-GEP on M(p,B). A pro-

cessor in each superstep distributes messages among its PEs and checks the

status of every PE, even if idle.

Let us denote by T aT (m, r) the computation complexity of function T without con-

sidering the simulation cost. We remind that the base case is reached when m ≤
log2/3 log n.

For function D∗, we have:

T aD∗(m, r) ≤

m1−εT aD∗

(
mε,

r

m2−2ε

)
+O

(
m1−εm

2

r

)
if r > m2−2ε

m3−3ε

r
T aD∗ (mε, 1) +O

(
m1−εm

2

r

)
if r ≤ m2−2ε

O
(
m3
)

if m ≤ log2/3 log n

which yields

T aD∗(m, r) ∈ O
(
m3

r

)
.

For function B, we have:

T aB(m, r) ≤

≤

m1−εT aB

(
mε,

r

m2−2ε

)
+O

(
m1−ε

(
T aD∗

(
mε,

r

m2−2ε

)
+
m2

r

))
if r > m2−2ε

m2−2ε

r
T aB (mε, 1) +O

(
m3−3ε

r
T aD∗ (mε, 1) +m1−εm

2

r

)
if r ≤ m2−2ε

O
(
m3
)

if m ≤ log2/3 log n

from which we get

T aB(m, r) ∈ O
(
m3

r
logε

logm2/r

logm

)
.

5.2. Network-Oblivious Algorithms 99

Finally, T aA(m, r) is bounded by this recurrence:

T aA(m, r) ≤

≤

m1−εT aA

(
mε,

r

m2−2ε

)
+O

(
m1−ε

(
T aB

(
mε,

r

m2−2ε

)
+ T aD∗

(
mε,

r

m2−2ε

)
+
m2

r

))
if r > m2−2ε

m1−εT aA (mε, 1) +O

(
m2−2ε

r
T aB (mε, 1) +

m3−3ε

r
T aD∗ (mε, 1) +m1−εm

2

r

)
if r ≤ m2−2ε

O
(
m3
)

if m ≤ log2/3 log n

which provides the following equation:

T aA(m, r) ∈ O
(
m3

r
log2

ε

logm2/r

logm

)
.

Since ε is a constant in (0, 1), we obtain:

T a(n, p) = T aA(n, p) ∈ O
(
n3

p
log2 log n

log(n2/p)

)
.

The cost of message distribution is upper bounded by T a(n, p), since each PE

performs an operation on every sent/received message and a naïve distribution

requires O (1) operations per message; therefore, we ignore it in T s(n, p). Since

each processor performs O (1) operations per PE in each superstep, we have that

T s(n, p) = O ((h(n)/p)Λ(n)), where Λ(n) denotes the number of supersteps of εN-

GEP inM(h(n)). We de�ne by ΛT (n), with T ∈ {A,B,D}, the number of supersteps
in T . Let `(n) =

√
n2/h(n) = log2/3 log n. Since each phase of A, B and D∗ consists

of a constant number of supersteps, it is not di�cult to see that:

ΛD∗(m) ≤

{
m1−εΛD∗(m

ε) +O (m1−ε) if m > `(n)

0 if m ≤ `(n)
,

which yields

ΛD∗(m) ∈ O
(

m

`(n)

)
.

Similarly, it can be proved that:

ΛB(m) ∈ O
(

m

`(n)
logε

log `(n)

logm

)
, ΛA(m) ∈ O

(
m

`(n)
log2

ε

log `(n)

logm

)
.

100 Chapter 5. Network-Oblivious Algorithms for GEP

Since ε is a constant in (0, 1) and by setting m = n, it follows that

T s(n, p) ∈ O
(

n2

l2(n)p
ΛA(n)

)
∈ O

(
n3

l(n)3p
log2 log n

log l(n)

)
∈ O

(
n3

p

)
.

Note that, if εN-GEP were speci�ed in an M(n2), the cost of simulation would have

been asymptotically bigger that the number of operations due to εN-GEP itself. For

this reason, εN-GEP has been described on M(h(n)), with h(n) = n2/ log4/3 log n.

Equation 5.12 follows since TεN−GEP(n, p,B) ∈ O (T a(n, p) + T s(n, p)). �

Corollary 5.9. Let ε be a constant in (0, 1). A commutative GEP computation on an

n×n matrix can be performed by εN-GEP on an M(p,B) with optimal communication

and computation complexities when p ≤ n2−δ, with δ an arbitrary constant in (0, 2),

and B ≤ (n/
√
p)1+ε.

Proof. The proof descends from Theorem 5.8, and can be proved as Corollary 5.3.

�

N-GEP exhibits optimal communication and computation complexities for a

wider range of values of p than εN-GEP; however the restriction on the block size

B is less restrictive in εN-GEP. Since the assumption on the block B in N-GEP is

likely to be satis�ed in practical scenarios and εN-GEP requires strong assumptions

on the integrality of the quantities involved, N-GEP is more appealing than εN-GEP.

Nevertheless, εN-GEP is still interesting because it is a parametric algorithm which

becomes N-GEP when ε = 1 − 1/ logm, and becomes PN-GEP (described in the

next section) when ε = 0. Moreover, observe that, by increasing ε by a constant

factor, εN-GEP achieves optimality for bigger communication block sizes, whilst its

communication and computation complexities increase by a constant factor.

εN-GEP requires the matrix on which the GEP computation will be applied

to be distributed among the PEs according with the bit-interleaved layout. This

assumption can be relaxed and, by means of a network-oblivious algorithm similar

to the one in Section 4.2.2 for matrix transposition, a row or column-major layout

can be used. However, the new implementation exhibits optimal communication

complexity on M(p,B) if p ≤ n2−δ, for an arbitrary constant δ in (0, 2), and B ≤
min{n, (n/√p)1+ε}.

It must be remarked that εN-GEP does not satisfy the fullness assumption since,

when p ≤ n2−2ε, the PEs that a processor is simulating send O (n2/p) messages,

however only O
(
n1+ε√p

)
of these are addressed outside the processor. We do not

5.2. Network-Oblivious Algorithms 101

analyze the communication time of εN-GEP in a D-BSP, however note that it requires

O (n1−ε) 0-supersteps, while N-GEP uses only O (1) 0-supersteps.

εN-GEP is not of appealing in practical scenarios for requiring strong assump-

tions on the integrality of the quantities involved. Nevertheless, it is still interesting

because it is a parametric algorithm which becomes N-GEP when ε = 1− 1/ logm,

and becomes PN-GEP when ε = 0. Moreover, by increasing ε by a constant fac-

tor, εN-GEP achieves optimality for bigger communication block sizes, whilst its

communication and computation complexities increase by a constant factor.

5.2.3 PN-GEP

PN-GEP (Pipelined GEP) is a network-oblivious algorithm for performing any GEP

computation, whose speci�cation is given in M(n2). It is a reminiscent of the systolic

algorithm proposed by Lewis and Kung in [LK91] for the algebraic path problems,

which are special cases of GEP computations and include Floyd-Warshall all-pairs

shortest paths and matrix multiplication.

The algorithm descends from function A of εN-GEP by setting5 ε = 0. Speci�-

cally, PN-GEP partitions the n × n input matrix into n2 submatrices of size 1 × 1,

thus de�ning n3 subproblems. Subproblems, which fall immediately into the base

cases, are solved as in εN-GEP's function A. It is immediate to see that PN-GEP

implements correctly all GEP computations for which I-GEP is correct, although

correctness in the general case can be achieved by modifying the algorithm using

similar techniques to those employed in C-GEP [CR07].

The following theorem and corollary show the optimality of PN-GEP on an

M(p,B), for all values of p and a wide range of values of B. Note also that the

restriction to commutative GEP computations is not needed in this case.

Theorem 5.10. A GEP computation on an n× n matrix can be performed by PN-

GEP with communication and computation complexities

HN−GEP (n, p,B) ∈ O
(

n2

B
√
p

+ n

)
, (5.15)

TN−GEP (n, p,B) ∈ Θ

(
n3

p

)
(5.16)

on an M(p,B), with 1 < p ≤ n2 and B ≥ 1.

Proof. Each M(p,B) processor holds an n/
√
p × n/√p submatrix of PEs, but only

PEs on the border send messages outside the processor. Since the algorithm is com-

5εN-GEP is de�ned when 0 < ε < 1, but function A is well de�ned when ε = 0.

102 Chapter 5. Network-Oblivious Algorithms for GEP

posed of Θ (n) supersteps, Equations 5.15 and 5.16 follows. �

Corollary 5.11. A commutative GEP computation on an n× n matrix can be per-

formed by PN-GEP with optimal communication and computation complexities when

1 < p ≤ n2 and 1 ≤ B ≤ n/
√
p.

Proof. The proof is straightforward. �

Although, PN-GEP yields optimal computation and communication complexities

in the evaluation model for a wide range of the parameters, it is not optimal in a

D-BSP. Indeed, PN-GEP uses only 0-supersteps and does not exploit the hierarchical

structure of the D-BSP interconnection topology.

Chapter 6

Conclusions

Philosophically, the reason research in

math matters is that by pursuing math

ideas that are deep and interesting for

their own sake, you will get real-world

applications in the future.

(Steven Hofmann)

In this �nal chapter we summarize the main contributions of the thesis and discuss

some future research directions.

6.1 Summary

In this thesis we contributed novel results on oblivious algorithms, pursuing two main

directions: the investigation of the potentialities and intrinsic limitations of oblivious

versus aware algorithms, and the introduction of the notion of oblivious algorithm

in parallel setting.

In Chapter 3, we studied various aspects concerning the execution of rational

permutations in a cache-RAM hierarchy focusing, in particular, on the oblivious set-

tings. We �rst proved a lower bound on the work complexity of any algorithm that

executes rational permutations with optimal cache complexity. By virtue of this

bound we were able to show the work optimality of the cache-aware algorithm deriv-

able from the one in [Cor93a], which also exhibits optimal cache complexity. Then,

we developed a cache-oblivious algorithm for performing any rational permutation,

which exhibits optimal cache and work complexities under the tall-cache assump-

tion. When the rational permutation is a matrix transposition, our cache-oblivious

algorithm represents an iterative version of the recursive cache-oblivious algorithm

103

104 Chapter 6. Conclusions

given in [FLPR99]. Finally, we investigate the separation in asymptotic complex-

ity between cache-aware and cache-oblivious algorithms, showing that for certain

families of rational permutations, including matrix transposition and bit-reversal, a

cache-oblivious algorithm which achieves optimal cache complexity for all values of

the Ideal Cache parameters cannot exist, while this is attainable through a cache-

aware algorithm. This result specializes to the case of rational permutations the

result proved in [BF03] for general permutations, and it is achieved by means of a

simulation technique which formalizes the approach used in [BF03]. To the best of

our knowledge, the only impossibility results of the kind presented in this chapter

and in [BF03], were proved in [BP01]. These results provide interesting insights

on the trade-o� between e�ciency and portability of cache-oblivious algorithms, and

also shed light on the interaction of algorithms with the Translation Lookaside Bu�er

(TLB) which, if regarded as a cache, does generally not satisfy the tall-cache assump-

tion [Kum03]. Indeed, several algorithms, even if aware, do not use TLB parameters,

and with respect to this component they are oblivious.

In Chapter 4, we proposed a framework for the study of oblivious algorithms in

the parallel setting. This framework explores the design of bulk-synchronous parallel

algorithms that, without resorting to parameters for tuning the performance on the

target platform, can execute e�ciently on parallel machines with di�erent degree of

parallelism and bandwidth characteristics. A network-oblivious algorithm is designed

on the speci�cation model, which consists of a clique of processor/memory pairs,

called processing elements, whose number is function exclusively of the input size.

Then, the communication and computation complexities of the network-oblivious

algorithm are analyzed in the evaluation model, which is similar to the speci�cation

model but provides two parameters, namely processor number and communication

block-size, which capture parallelism and granularity of communication. Finally, the

algorithm is run on the execution model, which is a block-variant of the D-BSP

model. The framework is appealing because, as proved in the thesis, for a wide

class of network-oblivious algorithms, optimality in the evaluation model implies op-

timality in the D-BSP model. We showed that a number of key problems, namely

matrix multiplication and transposition, discrete Fourier transform and sorting, ad-

mit network-oblivious algorithms which are optimal for a wide range of machine

parameters. We also present a further result on the separation between oblivious

and aware approaches, showing the impossibility of designing a network-oblivious

algorithm for matrix transposition which is optimal for all values of the evaluation

model parameters, while this is attainable through an aware parallel approach.

Finally, in Chapter 5 we presented three algorithms, called N-GEP, εN-GEP

6.2. Further research 105

and PN-GEP, for solving a wide class of computations encompassed by the Gaussian

Elimination Paradigm [CR06], which includes all-pairs shortest paths, Gaussian elim-

ination without pivoting and matrix multiplication. They are based on the parallel

and cache-oblivious implementations of the GEP paradigm given in [CR07, CR08],

and perform optimally in the evaluation model for di�erent ranges of the parameters.

In particular, εN-GEP and PN-GEP exploit large communication block size and an

high number of processors, respectively, better than N-GEP. However, N-GEP is

more appealing since we proved that it is also optimal in the D-BSP model for some

ranges of the parameters, while this is not the case for PN-GEP and we conjecture

for εN-GEP as well.

6.2 Further research

An interesting avenue for further research is to continue the study of the theoretical

separation between oblivious and aware approaches, for instance, by proving impos-

sibility results similar to those presented in this thesis and in previous works, for

other fundamental problems. Moreover, deeper investigations are required to under-

stand why the tall-cache and small-block assumptions are so crucial in certain cases

to obtain optimal cache and network-oblivious algorithms.

The network-oblivious framework o�ers several interesting directions for further

work. Naturally, one goal is to design e�cient network-oblivious algorithms for other

important problems, beyond the ones proposed in this thesis. Another issue regards

the necessity of the assumptions made in Theorem 4.5 to prove that optimality in

the evaluation model translates into optimality in the D-BSP. In fact, in the thesis

we developed a network-oblivious algorithm, N-GEP, which does not satis�es these

assumptions, and yet it is optimal in a D-BSP for certain ranges of the parameters.

It is evident that assumptions in the theorem are too conservative. Furthermore,

it would be interesting to study the relations between optimality in the evaluation

model and optimality in other execution models alternative to the D-BSP.

So far the network-oblivious framework and the algorithms developed as case

studies have been investigated only from a theoretical perspective by means of asymp-

totic analysis. Cache-oblivious algorithms are fully compatible with actual platforms

in the sense that the simulation of the speci�cation model in the execution model

is performed by the system through automatic replacement policies of cache lines.

An analogous simulation tool is not available for running network-oblivious algo-

rithms on parallel architectures. Hence, the realization of a library to support the

execution of network-oblivious algorithms is of fundamental importance for assessing

106 Chapter 6. Conclusions

experimentally the actual performance attained by this type of algorithms.

Finally, another interesting research work is to develop new compiling techniques

or to design speci�c architectural features which provide (a more) e�ective support

to the execution of oblivious algorithms. One example, as noted in [Fri99], is the

development of techniques to reduce the cost of procedure calls which are useful

in cache and network-oblivious algorithms. Another one is the identi�cation of fast

techniques to support execution of large number of light threads, that would be useful

for the simulation of processing elements of the speci�cation model in processors of

the execution model in the network-oblivious framework.

Appendix A

Properties of Function f (x)

We prove some lemmas that have been used in Chapter 3. Remind that the convex

function f(x) is de�ned as follows:

f(x) =

{
x log x if x > 0

0 if x = 0
.

Lemma A.1. If bi ≥ 0 for each i, with 0 ≤ i < k, and
∑k−1

i=1 bi ≤ b0, then

f

(
b0 −

k−1∑
i=1

bi

)
+

k−1∑
i=1

f(bi) ≤ f(b0).

Proof. Without loss of generality we suppose bi > 0 for each i, with 0 ≤ i < k, and∑k−1
i=1 f(bi) > f(b0). (The general case is a simple adaptation.) By the de�nition of

f we get:

f

(
b0 −

k−1∑
i=1

bi

)
+

k−1∑
i=1

f(bi) =

(
b0 −

k−1∑
i=1

bi

)
log

(
b0 −

k−1∑
i=1

bi

)
+

(
k−1∑
i=1

bi log bi

)

≤

(
b0 −

k−1∑
i=1

bi

)
log b0 +

(
k−1∑
i=1

bi

)
log b0 = f(b0).

�

Lemma A.2. Let a = (a0, . . . , as−1) and ak > 0 for each k, with 0 ≤ k < s. The

function

F (a) = f

(
s−1∑
k=0

ak

)
−

s−1∑
k=0

f (ak)

is concave and non decreasing for each ak, with 0 ≤ k < s.

107

108 Appendix A. Properties of Function f(x)

Proof. Let H(a) be the Hessian matrix of F (a) and denote with hi,j(a) the entry

of H in the i-th row and j-th column, that is, the second order partial derivative

of function F (a) with respect to variables aj and ai (in the given order). It is not

di�cult to see that:

hi,j(a) =

1∑s−1
k=0 ak

if i 6= j

1∑s−1
k=0 ak

− 1

ai
if i = j

.

Let x = (x0, . . . , xn−1) and x ∈ Rs. We get:

xH(a)xT = − 1∑s−1
k=0 ak

s−1∑
i=0

s−1∑
j=0

(√
ai
aj
xi −

√
aj
ai
xj

)2

≤ 0

Hence, H(a) is a negative semide�nite matrix and F (a) is concave.

Since the �rst order partial derivatives of F (a) are non negative when ak > 0 for

each k, with 0 ≤ k < s, F (a) is non decreasing for each ak. �

Lemma A.3. Let A be an r × s matrix, with r, s ≥ 1, and denote with ai,j ≥ 0 the

entry of A in the i-th row and j-th column. For 0 ≤ j < s let Mj be a �xed value

such that
∑r−1

i=0 ai,j ≤Mj. Then an upper bound on the function

F̃ (A) =
r−1∑
i=0

[
f

(
s−1∑
j=0

ai,j

)
−

s−1∑
j=0

f (ai,j)

]
(A.1)

is given by setting ai,j = Mj/r for all i and j, with 0 ≤ i < r and 0 ≤ j < s.

Proof. Suppose ai,j > 0 for each i and j, with 0 ≤ i < r and 0 ≤ j < s. F̃ (A) can

be rewritten as follows:

F̃ (A) = r
r−1∑
i=0

F ((ai,0, . . . , ai,s−1))

r
.

Since F (·) is concave, we can apply the multivariate Jensen's inequality [Neu90]:

F̃ (A) ≤ rF

(
r−1∑
i=0

(ai,0, . . . , ai,s−1)

r

)

≤ rF

((
r−1∑
i=0

ai,0
r
, . . . ,

r−1∑
i=0

ai,s−1

r

))

109

Since
∑r−1

i=0 ai,j ≤Mj and F (·) is non decreasing for each component, we get:

F̃ (A) ≤
r−1∑
i=0

F

((
M0

r
, . . . ,

Ms−1

r

))

≤
r−1∑
i=0

[
f

(
s−1∑
j=0

Mj

r

)
−

s−1∑
j=0

f

(
Mj

r

)]
,

from which the lemma follows. The previous equation is an upper bound on F̃ (A)

even if there are some ai,j = 0 since F (·) is continuous and non decreasing in each

component. �

Corollary A.4. Let A be an r×s matrix, with r, s ≥ 1, and denote with ai,j the entry

of A in the i-th row and j-th column. Let M0 and M be two �xed values such that∑r−1
i=0 ai,0 ≤ M0 and

∑s−1
j=1

∑r−1
i=0 ai,j ≤ M . Then, an upper bound to function F (A),

de�ned in Equation A.1, is given by setting ai,0 = M0/r and ai,j = M/(r(s− 1)) for

each i and j, with 0 ≤ i < r and 1 ≤ j < s.

Proof. Let Mj denote the partial sum
∑r−1

i=0 ai,j for each j with 0 ≤ j < s. By

Lemma A.3, we have that

F̃ (A) ≤
r−1∑
i=0

[
f

(
s−1∑
j=0

Mj

r

)
−

s−1∑
j=0

f

(
Mj

r

)]
.

≤
r−1∑
i=0

[
f

(
M0

r
+

s−1∑
j=1

M

r(s− 1)

)
− f

(
M0

r

)]
−

r−1∑
i=0

s−1∑
j=1

f

(
Mj

r

)
. (A.2)

For the Jensen's inequality, we have:

−
r−1∑
i=0

s−1∑
j=1

f

(
Mj

r

)
≤ −

r−1∑
i=0

s−1∑
j=1

f

(
M

r(s− 1)

)
.

Thus,the following upper bound on F̃ (A) follows:

F̃ (A) ≤
r−1∑
i=0

[
f

(
M0

r
+

s−1∑
j=1

M

r(s− 1)

)
− f

(
M0

r

)
−

s−1∑
j=1

f

(
M

r(s− 1)

)]
.

�

110 Appendix A. Properties of Function f(x)

Appendix B

Pseudocode of PI-GEP1 and

PI-GEP2

In this appendix, we reproduce the pseudocode of the two implementations of I-

GEP described in [CR07] and [CR08] for a CREW (concurrent read, exclusive write)

shared-memory model composed of p processors and one level of cache that can be

either shared or distributed. We refer to them as PI-GEP1 and PI-GEP2, respec-

tively. The initial call in both algorithms is A(x, n), where x is the n × n input

matrix of the GEP computation.

A(X,m)
INPUT: matrix X ≡ x[I, I] with I = [i0, i1] ⊆ [0, n) with m = i1 − i0 + 1.
OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × I × I).
1: if T = ∅ then return;
2: if m = 1 then
3: X[i0, i0]← f(X[i0, i0], X[i0, i0], X[i0, i0], X[i0, i0]);
4: else

5: A(X0,0,m/2);
6: In parallel invoke B(X0,1, X0,0,m/2), C(X1,0, X0,0,m/2)
7: D(X1,1, X1,0, X0,1, X0,0,m/2);
8: A(X1,1,m/2);
9: In parallel invoke B(X1,0, X1,1,m/2), C(X0,1, X1,1,m/2);
10: D(X0,0, X0,1, X1,0, X1,1,m/2);

Figure B.1: Function A of PI-GEP1[CR07].

111

112 Appendix B. Pseudocode of PI-GEP1 and PI-GEP2

B(X,U,m)
INPUT: matrices X ≡ x[I, J] and U ≡ x[I, I], with I = [i0, i1] ⊆ [0, n), J = [j0, j1] ⊆

[0, n), I ∩ J = ∅ and m = i1 − i0 + 1 = j1 − j0 + 1.
OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J × I).
1: if T = ∅ then return;
2: if m = 1 then
3: X[i0, i0]← f(X[i0, j0], U [i0, i0], X[i0, j0], U [i0, i0]);
4: else

5: parallel: B(X0,0, U0,0,m/2),B(X0,1, U0,0,m/2);
6: parallel: D(X1,0, U1,0, X0,0, U0,0,m/2),D(X1,1, U1,0, X0,1, U0,0,m/2);
7: parallel: B(X1,0, U1,1,m/2),B(X1,1, U1,1,m/2);
8: parallel: D(X0,0, U0,1, X1,0, U1,1,m/2),D(X0,1, U0,1, X1,1, U1,1,m/2);

Figure B.2: Function B of PI-GEP1[CR07].

C(X,V,m)
INPUT: matrices X ≡ x[I, J] and V ≡ x[J, J], with I = [i0, i1] ⊆ [0, n), J = [j0, j1] ⊆

[0, n), I ∩ J = ∅ and m = i1 − i0 + 1 = j1 − j0 + 1.
OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J × J).
1: if T = ∅ then return;
2: if m = 1 then
3: X[i0, j0]← f(X[i0, j0], X[i0, j0], V [j0, j0], V [j0, j0]);
4: else

5: parallel: C(X0,0, V0,0,m/2), C(X1,0, V0,0,m/2);
6: parallel: D(X0,1, X0,0, V0,1, V0,0,m/2),D(X1,1, X1,0, V0,1, V0,0,m/2);
7: parallel: C(X0,1, V1,1,m/2), C(X1,1, V1,1,m/2);
8: parallel: D(X0,0, X0,1, V1,0, V1,1,m/2),D(X1,0, X1,1, V1,0, V1,1,m/2);

Figure B.3: Function C of PI-GEP1[CR07].

D(X,U, V,W,m)
INPUT: matrices X ≡ x[I, J], U ≡ x[I,K], V ≡ x[K,J] and W ≡ x[K,K], with I =

[i0, i1] ⊆ [0, n), J = [j0, j1] ⊆ [0, n), K = [k0, k1] ⊆ [0, n), I ∩K = ∅, J ∩K = ∅ and
m = i1 − i0 + 1 = j1 − j0 + 1 = k1 − k0 + 1.

OUTPUT: execution of all updates 〈i, j, k〉 ∈ T , with T = Σf ∩ (I × J ×K).
1: if T = ∅ then return;
2: if m = 1 then
3: X[i0, j0]← f(X[i0, j0], U [i0, k0], V [k0, j0],W [k0, k0]);
4: else

5: parallel: D(X0,0, U0,0, V0,0,W0,0,m/2),D(X0,1, U0,0, V0,1,W0,0,m/2),
D(X1,0, U1,0, V0,0,W0,0,m/2),D(X1,1, U1,0, V0,1,W0,0,m/2);

6: parallel: D(X0,0, U0,1, V1,0,W1,1,m/2),D(X0,1, U0,1, V1,1,W1,1,m/2),
D(X1,0, U1,1, V1,0,W1,1,m/2),D(X1,1, U1,1, V1,1,W1,1,m/2).

Figure B.4: Function D of PI-GEP1[CR07].

113

A(X,m)
1: As in Lines 1-4 of A in Figure B.1;
2: for k ← 0 to r − 1 do

3: A(Xk,k,m/r);
4: parallel: B(Xk,j , Xk,k,m/r), C(Xi,k, Xk,k,m/r), for all 0 ≤ i, j < r and

i, j 6= k;
5: parallel: D(Xi,j , Xi,k, Xk,j , Xk,k,m/r), for all 0 ≤ i, j < r and i, j 6= k;

B(X,U,m)
1: As in Lines 1-4 of B in Figure B.2;
2: for k ← 0 to r − 1 do

3: parallel: B(Xk,j , Uk,k,m/r), for all 0 ≤ j < r and j 6= k;
4: parallel: D(Xi,j , Ui,k, Xk,j , Uk,k,m/r), for all 0 ≤ i, j < r and i, j 6= k;

C(X,V,m)
1: As in Lines 1-4 of C in Figure B.3;
2: for k ← 0 to r − 1 do

3: parallel: C(Xi,k, Vk,k,m/r), for all 0 ≤ i < r and i 6= k;
4: parallel: D(Xi,j , Xi,k, Vk,j , Vk,k,m/r), for all 0 ≤ i, j < r and i, j 6= k;

D(X,U, V,W,m)
1: As in Lines 1-4 of D in Figure B.4;
2: for k ← 0 to r − 1 do

3: parallel: D(Xi,j , Ui,k, Vk,j ,Wk,k,m/r), for all 0 ≤ i, j < r;

Figure B.5: Functions A, B, C and D of PI-GEP2 [CR08].

114 Appendix B. Pseudocode of PI-GEP1 and PI-GEP2

Bibliography

[AACS87] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A

model for hierarchical memory. In Proceedings of the 19th ACM Sympo-

sium on Theory of Computing, pages 305�314, 1987.

[ABC+06] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,

William Lester Plishker, John Shalf, Samuel Webb Williams, and

Katherine A. Yelick. The landscape of parallel computing research: A

view from Berkeley. Technical Report UCB/EECS-2006-183, EECS De-

partment, University of California, Berkeley, December 2006.

[ABF05] Lars Arge, Gerth Stølting Brodal, and Rolf Fagerberg. Cache-oblivious

data structures. In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook

of Data Structures and Applications, chapter 34, page 27. CRC Press,

2005.

[ACFS94] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform

memory hierarchy model of computation. Algorithmica, 12(2/3):72�109,

1994.

[ACS87] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Hierarchical memory

with block transfer. In Proceedings of the 28th IEEE Symposium on

Foundations of Computer Science, pages 204�216, 1987.

[ACS90] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication

complexity of PRAMs. Theoretical Computer Science, 71:3�28, 1990.

[Aea02] Narasimha R. Adiga and et al. An overview of the BlueGene/L su-

percomputer. In Proceedings of the ACM/IEEE Conference on Super-

computing, pages 1�22, Los Alamitos, CA, USA, 2002. IEEE Computer

Society Press.

[Aeo] AEOLUS project website http://aeolus.ceid.upatras.gr.

115

116 Bibliography

[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The Design

and Analysis of Computer Algorithms. Addison-Wesley, 1974.

[Arg04] Lars Arge. External geometric data structures. In Kyung-Yong Chwa

and J. Ian Munro, editors, Proceedings of the 10th Annual International

Conference of Computing and Combinatorics, volume 3106 of Lecture

Notes in Computer Science. Springer, 2004.

[Arv81] Arvind. Data �ow languages and architecture. In Proceedings of the 8th

Annual Symposium on Computer Architecture, 1981.

[AV88] Alok Aggarwal and Je�rey Scott Vitter. The input/output complexity of

sorting and related problems. Communications of the ACM, 31(9):1116�

1127, 1988.

[Bac78] John K. Backus. Can programming be liberated from the Von Neumann

style? A functional style and its algebra of programs. Communication

of the ACM, 21(8):613�641, 1978.

[BBP99] Sandeep N. Bhatt, Gianfranco Bilardi, and Geppino Pucci. Area-

universal circuits with constant slowdown. In Proceedings of the 18th

International Conference on Advanced Research in VLSI, pages 89�98,

1999.

[BDadH98] Armin Bäumker, Wolfgang Dittrich, and Friedhelm Meyer auf der Heide.

Truly e�cient parallel algorithms: 1-optimal multisearch for an exten-

sion of the BSP model. In Selected papers from the 3rd European Sym-

posium on Algorithms, pages 175�203, Amsterdam, The Netherlands,

1998. Elsevier Science Publishers B. V.

[BDP99] Armin Bäumker, Wolfgang Dittrich, and Andrea Pietracaprina. The

complexity of parallel multisearch on coarse-grained machines. Algorith-

mica, 24(3-4):209�242, 1999.

[Bel66] Laszlo A. Belady. A study of replacement algorithms for a virtual storage

computer. IBM Systems Journal, 5(2):78�101, 1966.

[Ber08] Alberto Bertoldo. An adaptive parallel solver for �nite-elements appli-

cations. PhD thesis, Department of Information Engineering, University

of Padova, 2008.

Bibliography 117

[BF03] Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-

obliviousness. In Proceedings of the 35th ACM Symposium on Theory of

Computing, pages 307�315, June 2003.

[BFGK05] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C.

Kuszmaul. Concurrent cache-oblivious B-trees. In Proceedings of the

17th ACM Symposium on Parallelism in Algorithms and Architectures,

pages 228�237, New York, NY, USA, 2005. ACM.

[BFPP01] Gianfranco Bilardi, Carlo Fantozzi, Andrea Pietracaprina, and Geppino

Pucci. On the e�ectiveness of D-BSP as a bridging model of parallel

computation. In Proceedings of the International Conference on Com-

putational Science-Part II, volume 2074 of Lecture Notes in Computer

Science, pages 579�588, London, UK, 2001. Springer-Verlag.

[BP97] Gianfranco Bilardi and Franco Preparata. Processor-time tradeo�s un-

der bounded-speed message propagation: Part I, upper bounds. Theory

of Computing Systems, 30:523�546, 1997.

[BP99] Gianfranco Bilardi and Franco Preparata. Processor-time tradeo�s un-

der bounded-speed message propagation: Part II, lower bounds. Theory

of Computing Systems, 32:531�559, 1999.

[BP01] Gianfranco Bilardi and Enoch Peserico. A characterization of temporal

locality and its portability across memory hierarchies. In Proceedings

of the 28th International Colloquium on Automata, Languages and Pro-

gramming, volume 2076 of Lecture Notes in Computer Science, pages

128�139, 2001.

[BPP99] Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci. A quan-

titative measure of portability with application to bandwidth-latency

models for parallel computing. In Proceedings of the 5th International

Euro-Par Conference on Parallel Processing, volume 1685 of Lecture

Notes in Computer Science, pages 543�551, September 1999.

[BPP+05] Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, Fabio Schi-

fano, and Ra�aele Tripiccione. The potential of on-chip multiprocessing

for QCD machines. In Proceedings of the 12th International Confer-

ence on High-Performance Computing, volume 3769 of Lecture Notes in

Computer Science, pages 386�397, 2005.

118 Bibliography

[BPP07] Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci. Decom-

posable BSP: A bandwidth-latency model for parallel and hierarchical

computation. In John Reif and Sanguthevar Rajasekaran, editors, Hand-

book of Parallel Computing: Models, Algorithms and Applications, pages

277�315. CRC Press, 2007.

[BPPS07] Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, and

Francesco Silvestri. Network-oblivious algorithms. In Proceedings of the

21st IEEE International Parallel and Distributed Processing Symposium,

March 2007.

[CFSV95] Thomas Cheatham, Amr F. Fahmy, Dan C. Stefanescu, and Leslie G.

Valiant. Bulk synchronous parallel computing - a paradigm for trans-

portable software. In Proceedings of the 28th Hawaii International Con-

ference on System Sciences, page 268, Washington, DC, USA, 1995.

IEEE Computer Society.

[CG98] Larry Carter and Kang Su Gatlin. Towards an optimal bit-reversal

permutation program. In Proceedings of the 39th IEEE Symposium on

Foundations of Computer Science, pages 544�555, 1998.

[Cho07] Rezaul A. Chowdhury. Cache-e�cient Algorithms and Data Structures:

Theory and Experimental Evaluation. PhD thesis, Department of Com-

puter Sciences, The University of Texas at Austin, August 2007.

[CKP+96] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sa-

hay, Eunice E. Santos, Klaus E. Schauser, Ramesh Subramonian, and

Thorsten von Eicken. LogP: A practical model of parallel computation.

Communications of the ACM, 39(11):78�85, November 1996.

[CLPT99] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and

Mithuna Thottethodi. Recursive array layouts and fast parallel matrix

multiplication. In Proceedings of the 11th ACM Symposium on Parallel

Algorithms and Architectures, pages 222�231, 1999.

[CLPT02] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and

Mithuna Thottethodi. Recursive array layouts and fast matrix mul-

tiplication. IEEE Transactions on Parallel and Distributed Systems,

13(11):1105�1123, November 2002.

Bibliography 119

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord

Stein. Introduction to Algorithms. The MIT Press, Cambridge, MA,

USA, second edition, September 2001.

[Cor93a] Thomas H. Cormen. Fast permuting on disk arrays. Journal of Parallel

and Distributed Computing, 17(1-2), 1993.

[Cor93b] Thomas H. Cormen. Virtual Memory for Data-Parallel Computing. PhD

thesis, Massachussetts Institute of Technology, 1993.

[CR06] Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-oblivious dy-

namic programming. In Proceedings of the 17th ACM-SIAM Symposium

on Discrete Algorithm, pages 591�600, 2006.

[CR07] Rezaul A. Chowdhury and Vijaya Ramachandran. The cache-oblivious

Gaussian elimination paradigm: theoretical framework, parallelization

and experimental evaluation. In Proceedings of the 19th annual Sympo-

sium on Parallelism in Algorithms and Architectures, pages 71�80, New

York, NY, USA, 2007. ACM.

[CR08] Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-e�cient dy-

namic programming algorithms for multicores. In Proceedings of the

20th Symposium on Parallelism in Algorithms and Architectures, pages

207�216, New York, NY, USA, 2008. ACM.

[CSG98] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Archi-

tecture: A Hardware/Software Approach. Morgan Kaufmann, August

1998.

[Dem56] Howard B. Demuth. Electronic Data Sorting. PhD thesis, Stanford

University, October 1956.

[Dem85] Howard B. Demuth. Electronic data sorting. IEEE Transactions on

Computers, 34(4):296�310, 1985.

[Dem02] Erik Demaine. Cache-oblivious algorithms and data structures. Lecture

Notes from the EEF Summer School on Massive Data Sets, 2002.

[DHMD99] Frank Dehne, David Hutchinson, Anil Maheshwari, and Wolfgang Dit-

trich. Reducing I/O complexity by simulating coarse grained parallel

algorithms. In Proceedings of the 13th International Symposium on Par-

allel Processing and the 10th Symposium on Parallel and Distributed

120 Bibliography

Processing, pages 14�20, Washington, DC, USA, 1999. IEEE Computer

Society.

[DlTK95] Pilar De la Torre and Clyde P. Kruskal. A structural theory of re-

cursively decomposable parallel processor-networks. In Proceedings of

the IEEE Symposium on Parallel and Distributeed Processing, page 570,

Washington, DC, USA, 1995. IEEE Computer Society.

[DlTK96] Pilar De la Torre and Clyde P. Kruskal. Submachine locality in the bulk

synchronous setting. In Proceedings of the 2nd International Euro-Par

Conference on Parallel Processing-Volume II, volume 1124 of Lecture

Notes in Computer Science, pages 352�358, August 1996.

[Fan03] Carlo Fantozzi. A Computational Model for Parallel and Hierarchical

Machines. PhD thesis, Department of Information Engineering, Univer-

sity of Padova, 2003.

[FIP99] FIPS PUB 46-3. Data Encryption Standard (DES). National Institute

for Standards and Technology, Gaithersburg, MD, USA, October 1999.

[FJ98] Matteo Frigo and Steven G. Johnson. FFTW: an adaptive software

architecture for the FFT. Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, 3:1381�1384 vol.3,

May 1998.

[FK03] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2003.

[Flo72] Richard W. Floyd. Permuting information in idealized two-level stor-

age. In R. Miller and J. W. Thatche, editors, Complexity of Computer

Computations, pages 105�109. Plenum, 1972.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-

machandran. Cache-oblivious algorithms. In Proceedings of the 40th

IEEE Symposium on Foundations of Computer Science, pages 285�298,

1999.

[FPP03] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. A general

Pram simulation scheme for clustered machines. International Journal

on Foundations of Computer Science, 14(6):1147�1164, 2003.

Bibliography 121

[FPP06] Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci. Translating

submachine locality into locality of reference. Journal of Parallel and

Distributed Computing, 66(5):633�646, 2006.

[Fri99] Matteo Frigo. Portable High-Performance Programs. PhD thesis, Mas-

sachusetts Institute of Technology, June 1999.

[Fri08] Matteo Frigo. Personal communication, 2008.

[FS06] Matteo Frigo and Volker Strumpen. The cache complexity of multi-

threaded cache oblivious algorithms. In Proceedings of the 18th ACM

Symposium on Parallelism in Algorithms and Architectures, pages 271�

280, New York, NY, USA, 2006. ACM.

[FW78] Steven Fortune and James Wyllie. Parallelism in random access ma-

chines. In Proceedings of the 10th ACM Symposium on Theory of Com-

puting, pages 114�118, New York, NY, USA, 1978. ACM.

[GMR99] Phillip B. Gibbons, Y. Matias, and Vijaya Ramachandran. Can a shared-

memory model serve as a bridging-model for parallel computation? The-

ory of Computing Systems, 32(3):327�359, 1999.

[Gol78] Leslie M. Goldschlager. A uni�ed approach to models of synchronous

parallel machines. In Proceedings of the 10th annual ACM symposium

on Theory of computing, pages 89�94, New York, NY, USA, 1978. ACM.

[Goo99] Michael T. Goodrich. Communication-e�cient parallel sorting. SIAM

Journal on Computing, 29(2):416�432, 1999.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The

Johns Hopkins University Press, October 1996.

[GVW96] Garth A. Gibson, Je�rey Scott Vitter, and John Wilkes. Strategic di-

rections in storage I/O issues in large-scale computing. ACM Computer

Survey, 28(4):779�793, 1996.

[HK81] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble

game. In Proceedings of the 13th ACM Symposium on Theory of Com-

puting, pages 326�333, New York, NY, USA, 1981. ACM.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture,

Fourth Edition: A Quantitative Approach. Morgan Kaufmann Publish-

ers Inc., San Francisco, CA, USA, 2006.

122 Bibliography

[ITT04] Dror Irony, Sivan Toledo, and Alexander Tiskin. Communication lower

bounds for distributed-memory matrix multiplication. Journal of Par-

allel and Distributed Computing, 64(9):1017�1026, 2004.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, USA, 1992.

[KA02] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern

Architectures: A Dependence-based Approach. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2002.

[Ker70] Leslie Robert Kerr. The e�ect of algebraic structure on the computa-

tional complexity of matrix multiplication. PhD thesis, Cornell Univer-

sity, 1970.

[Knu98] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting

and Searching. Addison-Wesley Professional, second edition, April 1998.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for

shared-memory machines. In Handbook of Theoretical Computer Science,

Volume A: Algorithms and Complexity, pages 869�942. MIT Press, 1990.

[Kum03] Piyush Kumar. Cache oblivious algorithms. In Meyer et al. [MSS03],

pages 193�212.

[Lei85] Charles E. Leiserson. Fat-trees: universal networks for hardware-e�cient

supercomputing. IEEE Transactions on Computers, 34(10):892�901, Oc-

tober 1985.

[Lei92] Frank Thomson Leighton. Introduction to Parallel Algorithms and Ar-

chitectures: Arrays • Trees • Hypercubes. Kaufmann, 1992.

[LK91] Paul S. Lewis and Sun-Yuan Kung. An optimal systolic array for the

algebraic path problem. IEEE Transactions on Computers, 40(1):100�

105, 1991.

[MHS05] Marjan Merenik, Jan Heering, and Anthony M. Sloane. When and

how to develop domain-speciï¬�c languages. ACM Computer Surveys,

37(4):316�344, 2005.

[MS00] Kurt Mehlhorn and Peter Sanders. Scanning multiple sequences via

cache memory. Algorithmica, 35:2003, 2000.

Bibliography 123

[MSS03] Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for

Memory Hierarchies, Advanced Lectures (Dagstuhl Research Seminar,

March 10-14, 2002), volume 2625 of Lecture Notes in Computer Science.

Springer, 2003.

[Neu90] Edward Neuman. Inequalities involving multivariate convex functions

ii. Proceedings of the American Mathematical Society, 109(4):965�974,

1990.

[ONH+96] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and

Kunyung Chang. The case for a single-chip multiprocessor. In Pro-

ceedings of the 7th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 2�11. ACM

Press, 1996.

[Pie95] Andrea Pietracaprina. Lower bound for BSPC matrix multiplication.

Manuscript, 1995.

[PPS06] Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri. Cache-

oblivious simulation of parallel programs. In Proceedings of the 8th Work-

shop on Advances in Parallel and Distributed Computational Models,

April 2006.

[Rah02] Naila Rahman. Algorithms for hardware caches and TLB. In Meyer

et al. [MSS03], pages 171�192.

[SCD02] Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir. Towards a

theory of cache-e�cient algorithms. Journal of the ACM, 49(6):828�

858, 2002.

[Sil05] Francesco Silvestri. Simulazione di algoritmi paralleli per il modello

D-BSP su una gerarchia di cache ideali. Master's thesis, Department

of Information Engineering, University of Padova, Italy, October 2005.

Laurea Thesis (in italian).

[Sil06] Francesco Silvestri. On the limits of cache-oblivious matrix transpo-

sition. In Ugo Montanari, Donald Sannella, and Roberto Bruni, edi-

tors, Proceedings of the 2nd Symposium of Trustworthy Global Comput-

ing, volume 4661 of Lecture Notes in Computer Science, pages 233�243.

Springer, 2006.

124 Bibliography

[Sil08] Francesco Silvestri. On the limits of cache-oblivious rational permuta-

tions. Theoretical Computer Science, 402(2-3):221�233, 2008.

[SK97] Jop F. Sibeyn and Michael Kaufmann. BSP-like external-memory com-

putation. In Proceedings of the 3rd Italian Conference on Algorithms

and Complexity, pages 229�240, London, UK, 1997. Springer-Verlag.

[SN96] Elizabeth A.M. Shriver and Mark Nodine. An introduction to parallel

I/O models and algorithms. In Input/output in parallel and distributed

computer systems, pages 31�68. Kluwer Academic Publishers, 1996.

[SV87] John E. Savage and Je�rey Scott Vitter. Parallelism in space-time trade-

o�s. In Advances in Computing Research, volume 4, pages 117�146.

North-Holland, 1987.

[Tok] Tokutek website: www.tokutek.com.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Commu-

nications of the ACM, 33(8):103�111, August 1990.

[Vit01] Je�rey Scott Vitter. External memory algorithms and data structures:

dealing with massive data. ACM Computing Surveys, 33(2):209�271,

2001.

[VS94] Je�rey Scott Vitter and Elizabeth A.M. Shriver. Algorithms for parallel

memory I: Two-level memories. Algorithmica, 12(2/3):110�147, 1994.

[Wol96] Michael Wolfe. Parallelizing compilers. ACM Computer Surveys,

28(1):261�262, 1996.

[WPD01] R. Clinton Whaley, Antoine Petitet, and Jack Dongarra. Automated

empirical optimizations of software and the ATLAS project. Parallel

Computing, 27(1-2):3�35, 2001.

[YRP+07] Kamen Yotov, Thomas Roeder, Keshav Pingali, John A. Gunnels, and

Fred G. Gustavson. An experimental comparison of cache-oblivious and

cache-conscious programs. In Proceedings of the 19th ACM Symposium

on Parallel Algorithms and Architectures, 2007.

	Introduction
	Models for Memory and Communication Hierarchies
	Models for memory hierarchy
	External Memory model
	Ideal Cache model

	Models for communication hierarchy
	D-BSP model

	Limits of Cache-Oblivious Rational Permutations
	Rational permutations
	Lower bounds
	Cache-oblivious algorithm for rational permutations
	Computing the values of a rational permutation
	Performing a rational permutation

	Limits of cache-oblivious rational permutations
	The simulation technique
	Impossibility result for rational permutations

	Network-Oblivious Algorithms
	The framework
	Algorithms for key problems
	Matrix multiplication
	Matrix transposition
	Impossibility result for matrix transposition
	FFT
	Sorting

	Network-Oblivious Algorithms for GEP
	Preliminaries
	Definition of GEP
	Previous cache-oblivious and parallel implementations of GEP

	Network-Oblivious Algorithms
	N-GEP
	eN-GEP
	PN-GEP

	Conclusions
	Summary
	Further research

	Properties of Function f
	Pseudocode of PI-GEP1 and PI-GEP2
	Bibliography

